
A Multiobjective Optimisation Approach For The
Dynamic Inference and Refinement Of Agent-Based

Model Specifications
Salem F. Adra

Microsoft
STC

London, UK
sadra@microsoft.com

Mariam Kiran
School of Computing
University of Leeds

Leeds, UK
m.kiran@leeds.ac.uk

Phil McMinn
Dept. of Computer Science

University of Sheffield
Sheffield, UK

p.mcminn@sheffield.ac.uk

Neil Walkinshaw
Dept. of Computer Science

University of Leicester
Leicester, UK

n.walkinshaw@mcs.le.ac.uk

Abstract—Despite their increasing popularity, agent-based
models are hard to test, and so far no established testing
technique has been devised for this kind of software applications.
Reverse engineering an agent-based model specification from
model simulations can help establish a confidence level about the
implemented model and in some cases reveal discrepancies be-
tween observed and normal or expected behaviour. In this study, a
multiobjective optimisation technique based on a simple random
search algorithm is deployed to dynamically infer and refine the
specification of three agent-based models from their simulations.
The multiobjective optimisation technique also incorporates a
dynamic invariant detection technique which serves to guide the
search towards uncovering new model behaviour that better
captures the model specification. The Non-dominated Sorting
Genetic Algorithm (NSGA-II) was also deployed to replace the
random search algorithm, and the results from both approaches
were compared. While both algorithms revealed good potential in
capturing the model specifications, the pure exploratory nature
of random search was found more suitable for the application at
hand, compared to the balanced exploitation/exploration nature
of genetic algorithms in general.

I. INTRODUCTION

Computational models are computer programs designed to
simulate complex systems; for example financial markets and
natural systems such as skin tissue and insect colonies. Scien-
tists and industrialists use computational models to help de-
velop their understanding of the natural system being modeled,
to make forecasts, and to predict the impact of some changes
to the system. With this in mind, it is of high importance
that the models have been properly tested. Recent scientific
software errors have led to papers being retracted from Science
[2]. Empirical work by Hatton [3] found an average of eight
serious faults in every 1000 lines of C code analyzed in a
series of large scientific programs. In the banking sector, losses
made by NatWest, Barclays and Deutsche Morgan Grenfell
totalling tens of millions of pounds were blamed on decisions
that involved economic model errors [4].

Agent-based modelling is attractive because it allows a com-
plex system to be constructed in terms of the rules that govern
individuals within that system. The macroscopic behaviour

“emerges” from low-level interactions between the individual
agents. Agent-based models (ABMs) have been used to model
a diverse range of complex systems, from skin-cell colonies
[9] to the behaviour of humans in a crowd, up to full-scale
models of macro-economic systems [5].

Emergence - the very phenomenon that makes agent-based
models so powerful - also makes them very difficult to
test. Emergent behaviour, though intended, is not explicitly
specified; it arises out of complex (and often unexpected)
interactions between individual agents. How do we know that
the individual agents are behaving as they are supposed to?
What inputs (i.e. initial agent-states) would it take to cause
the system to misbehave - to produce emergent behaviour that
is unexpected or incorrect?

The predominant current approach to answering these ques-
tions is to test the system by hand, on an ad-hoc basis.
The developer manually selects some initial configurations
for the system, and observes the ensuing system behaviour
via visualisations. This is both time-consuming, and virtually
futile if the system contains lots of agents. There may be
thousands of agents, each of which has a virtually unlimited
number of initial configurations, that can collectively yield a
vast range of possible outcomes.

This paper presents a dynamic framework, to intelligently
probe these large systems and reverse engineer their specifica-
tions. This work builds on the previous work presented in [6]
by making the inference process dynamic, which allows the
refinement of the inferred specifications. The idea is to explore
the input space of ABMs in search for model configurations
that reveal new behaviour (i.e. outputs). The framework uses
an inference technique called Daikon to observe and learn
simple rules about the general model behaviour. It combines
this with a multi-objective random search algorithm to seek
out configurations that will break the inferred rules. The main
objective of this process is to converge or get as close as
possible to the real underlying specification of a certain ABM.
Such inferred specification can then be reported to the model
designer to assist him/her validating the functionality of the
model.



New Model 
Initial Configuration

Objective 
Functions Values
(at generation t)

Simulate A B M

Step 2

Maximise the number of invalidated Invariants 
by Evolving Input parameters 

(Exploration Phase)

Step 1

G enerate Traces F iles 
from the Simulation Results

Step 3

Search the Trace F iles for records 
that violate invariants 

from the L ist of Invariant at generation t

Step 4

NSG A2
or

Random 
Search

L ist of Model Invariant 
at generation t

F L A M E

Simulation 
Results

Trace files

Violations Detected?

Update L ist of Invariants
Step 5

yes

no

Fig. 1. The Dynamic Framework for Reverse Engineering ABM Specifica-
tions

This paper is structured as follows: In Section 2, the pro-
posed framework for reverse engineering ABM specifications
is introduced in detail. In Section 3, the experimental setup
used to evaluate the performance of the suggested framework
is discussed. Section 4 then presents experimental results with
the framework for three models. Section 5 presents related
work, while Section 6 conclusions and discusses directions
for future work.

II. THE PROPOSED FRAMEWORK

In Figure 1, the implemented framework for dynamically
inferring and refining ABM specifications from model sim-
ulations is presented. The framework deploys two essential
processes: 1) a multiobjective metaheuristic search process,
and 2) a dynamic invariant detection process used to evaluate
and score the different objective functions. Model, or more
generally, program invariants are essential information that can
be found in software documentation, or even in comments or
assert statements in the code itself. Such model invariants are
crucial for defining the model specification, but are neverthe-
less often missing or unknown. Reverse engineering tools such
as the dynamic invariant detector Daikon [7] play an important
role in proposing any such invariants that can further help the
software programmer or designer gain more insights on the
software functionality.

In Figure 1, Step 1 is the exploration phase which operates
in the decision variable space (i.e. input space) of an ABM
and which is essentially implemented as a random search
(NSGA2 [1] is also investigated - see Section Experimental
Setup). At step 1, a new population of decision vectors that
can be used to configure different instances of the ABMs
investigated are produced. The objective of Step 1 is to
search for interesting ABM inputs (i.e. initial agent state
configurations) that might lead the simulated model to vio-
late invariants from the archived list of invariants. Steps 2-
5 can be seen as the processes of calculating the objective

functions and updating the archive of best (i.e. most general
and refined) model invariants found so far. The archive of
best solutions found (i.e. the list of model invariants in Figure
1) is initially empty, and the model invariants found at the
first generation of the process are first copied to this archive
(Step 5). Subsequently, this archive is dynamically updated
to only include the most general invariants that subsumes
previously inferred invariants, and which more closely capture
the model specifications being inferred. More closely, in Step
2 (the 1st stage of the objective function evaluation process),
several instances of the investigated ABM are simulated for
a certain number of iterations using each of the candidate
vectors of model configurations produced in Step 1. In this
work, the agent-based framework used to simulate the agent-
based models investigated is the Flexible Large-scale Agent-
based Modelling Environment (FLAME) [8]. Using FLAME,
the model simulation outputs are stored in XML files at each
iteration of the model simulation. At Step 3 (the 2nd stage
of the objective function evaluation process), a trace file is
compiled from the execution of the different ABM instances at
Step 2. These trace files contains the concatenated data stored
in the produced XML files for each model execution. The
dynamic invariant detector Daikon [7] is then used to read and
process the trace files at Steps 4 and 5. Daikon is a popular
and widely used tool for dynamic detection of likely program
invariants. At the first generation of the framework, step 4
is skipped, since the archive is initially empty, and step 5 is
executed on the trace files to create an initial list of invariants
to populate the archive. These invariants are observations about
some traced agent variables and which held true during an
execution (e.g. x > 5 or 0 < y < 100). Subsequently at
the next generations of the framework, step 4 is executed
by calling Daikon to check whether any trace file contain
data that invalidate some invariants stored in the archive. The
different model configurations produced at Step 1 are then
ranked, with the best ranks being allocated to the candidate
decision vectors of model configurations violating the most
invariants. The whole process is then repeated for a certain
number of generations.

A multiobjective approach was adopted for the exploration
search process at Step 1 in order to cooperatively and effi-
ciently search for inputs that simultaneously optimize multiple
objective functions. For each type of agent involved, an objec-
tive is created where the goal is to falsify that agent’s inferred
invariants, therefore dynamically refining the automatically
inferred model specifications.

III. EXPERIMENTAL SETUP

In this section, the experimental setup used to evaluate the
framework described in the previous section is discussed.

A. The Investigated ABM Model

Three agent-based models were used to assess the perfor-
mance and utility of the proposed framework: a simple Fox-
Rabbit (also widely known as the predator-prey) model, a
biological agent-based model which simulates the formation



TABLE I
FOX RABBIT MODEL: AGENTS’ MEMORY VARIABLES

x (m) x coordinate
y (m) y coordinate

lifeExpectancy life expectancy of a
Fox Agent

numberOfEatenPreys Number of rabbits eaten
by a Fox Agent

TABLE II
KERATINOCYTE MODEL: AGENTS’ MEMORY VARIABLES

x (m) x coordinate
y (m) y coordinate

type (m) Type
cycle (m) Position in Cell Cycle

z z coordinate
force x Forces exerted by other

surrounding agents on an
Agent in the x direction

force y Forces exerted by other
surrounding agents on an
Agent in the y direction

force z Forces exerted by other
surrounding agents on an
Agent in the z direction

num xy bonds Number of lateral bonds
num z bonds Number of vertical bonds

num stem bonds Number of bonds
with Stem Cells

contact inhibited ticks Number of iterations
during which an Agent
was contact inhibited

diff noise factor Differentiation noise factor
motility Agent motility

dir Agent migration direction

of skin tissue [9] (also referred to as the keratinocyte or skin
model from this point onward) and an economic model. The
Fox-Rabbit model involves fox (predator) and rabbit (prey)
agents, the number and ratios of which can vary. In this study,
the number of rabbits and foxes were fixed to 100 and 20
respectively. This was done in order to have a better idea of
how such model is expected to behave under fixed conditions.
The functionality of the fox and rabbit agents is quite simple.
Fox agents chase and eat rabbits, while rabbits try to dodge
and run away from foxes.

TABLE III
ECONOMIC MODEL: AGENTS’ MEMORY VARIABLES

Firm Agent
x (m) x coordinate
y (m) y coordinate

Productivity (m) Rate of production
Production (m) Firm’s Production

Profits Firm’s Profit
Person Agent

Savings (m) Person’s Savings
Wage (m) Person’s Wage

x (m) Person’s x location
y (m) Person’s y location

Mall Agent
x (m) x coordinate
y (m) y coordinate

The biological agent-based model is on the other hand
more complex. It involves 3 main types of interacting cell
agents (stem, transit amplifying (TA) and committed cells
(COM)). Each type of cell agent has a specific functionality,
and their collaboration and interaction lead to the formation
of virtual piece of skin tissue. For more information about the
keratinocyte colony formation model, the interested reader is
directed to [9]. For this study, the number of initial, randomly
generated and seeded cell agents was set to 5. Depending on
their locations and types, these cells can then divide, migrate
or die during model simulations.

The third model investigated is an economic agent-based
model that allows interactions between 3 types of agents:
malls, firms and persons. The simulation starts by the Firms
and Persons becoming aware of their surrounding malls. Once
they have this detail the person agent send job applications to
the malls and the firms send vacancy messages to the malls.
The mall agents are responsible for getting this information
and sorting which person works at which firm based on their
wage demand and distance (location). In the second phase of
this model the malls also collect products from the firms to
sell them to the person agents. The malls hence buy the goods
from the firms and sell them to person agents at the highest
possible price in the market. Therefore the economic model
simulates an active labour market where people are employed
to work at firms and get paid wages. The model also simulates
a goods market where the firms sells their products to the malls
who in turn sell it to the people on the system.

In Tables I, II and III, the different agents’ memory variables
are illustrated for all three models respectively. All these
variables were traced, and the variables postfixed with (m)
were also manipulated by the random search or NSGA2 at
Step 1.

B. Framework Setup

In addition to using a random search to explore the ABM
input domains, NSGA2 was also used in a second set of
experiments in order to compare the results produced by
the two stochastic algorithms. Because of the iterative and
population based nature of the deployed random search and
NSGA2, and due to the fact that the application investigated
involved simulating computationally expensive ABMs to cal-
culate objective functions, the population sizes and number
of generations for each algorithm were set to 10 and 20
respectively. It should be noted, that this setting is much lower
than the usual settings used with NSGA2 (usually population
sizes of 100 and 250 generations), but for this proof of
principle and experimental paper these settings were deemed a
good start. For NSGA2, the crossover operator used in step 1
consisted of a simple two-parent, single point crossover which
produced two new offspring solutions by swapping values
of their respective parent solutions. Moreover, the mutation
operator used in NSGA2 operated on individual candidate
solutions by randomly mutating their manipulated variables
(see Tables I, II and III) within their domain of definition. In
Table IV, the configuration parameters used for the Steps 1 to



4 are presented. Except for the use of crossover and mutation
operators, the same framework configuration presented in
Table IV was used for the random search.

C. Framework Evaluation

In order to assess the performance of the suggested frame-
work, 30 executions of the random search (RS) and NSGA2
based frameworks were executed using the configuration pre-
sented in Table IV. The final list of invariants produced by each
execution i of RS is then assessed with respect to the results
produced by NSGA2. This is performed by searching all of
the trace files produced by the 30 executions of NSGA2, for
records (agents’ data) that violated the invariant list produced
by a certain execution i of RS. The total number of all such
violations is then used to score the list of invariants produced
by RS at execution i. The same process is then reversed
to assess the quality of the final list of invariants produced
by each execution of NSGA2. The invariant lists produced
by a certain algorithm and that were less violated by the
other algorithm were then deemed better, and hence more
general and closer to capturing the specification of a certain
ABM. Moreover, the same comparative result assessment
process was conducted on a generational basis to monitor
how both algorithms’ search progressed towards a certain final
list of invariants. This was performed by assessing the list of
invariants produced by a certain algorithm at generation j (j=
1 to 20) of a certain execution i (i = 1 to 30) by counting the
number of records violating it and which originate from the
trace files produced at generation j of all executions i of the
other algorithm. In the next section, the results produced by
each algorithm for each ABM are presented and discussed.

IV. RESULTS

In Figures 2, 3 and 4 box plots are used to statistically depict
the quality of the final results produced by each algorithm
with respect to the other for each of the 3 agent based
models. In Figure 2, the lower, median and upper quartiles
illustrating the number of RS Traces violating NSGA2 and
vice versa for the Fox (predator) and Rabbit (prey) agents are
illustrated. For the Fox agents, RS produced a median value
of approximately 800 violations of the final invariants lists
produced by NSGA2 for Fox agents, compared to a median
value of around 400 violations for NSGA2, i.e. half the number
of violations produced by RS. The same observation was
illustrated for the Rabbit agents. RS was producing almost
double the number of violations compared to NSGA2 with
respect to the invariant lists produced at each of the 30
executions for the rabbit agents. This was clearly indicating
that RS was producing better list of invariants for the rabbit
and fox agents, and which can be used by the model designer
to verify the functionality of the model and check for any
inconsistencies or clear anomalies. Another remark which
is worth noting as well, is that the size of the box plots
produced by RS for the fox-rabbit agent model were clearly
larger than the box plots produced by NSGA2 which was
expected due to the random search nature of RS compared to

TABLE IV
FRAMEWORK CONFIGURATION

NSGA2 Operators
Crossover Probability 0.8
Mutation Probability 0.2

Random Search and NSGA2
Population size 10

Number of generations 20
Number of Model
iterations (Step 2)
for each of the 10 100
candidate solutions

Fox Rabbit Model
Objective Functions

Maximize the number of
1 Fox agents’

invariant violations
Maximize the number of

2 Rabbit agents’
invariant violations

Variables Range
x [10, 990]
y [10, 490]

Keratinocyte Model
Objective Functions

Maximize the number of
1 STEM agents’

invariant violations
Maximize the number of

2 TA agents’
invariant violations

Maximize the number of
3 COM agents’

invariant violations
Variables Range

x [10, 990]
y [10, 490]

{0, 1, 2}
0 = Stem

type 1 = TA
2 = COM

[0, 120] for Stem agents
cycle [0, 60] for TA agents

0 for COM agents
Economic Model

Objective Functions
Maximize the number of

1 Firm agents’
invariant violations

Maximize the number of
2 Person agents’

invariant violations
Maximize the number of

3 Mall agents’
invariant violations

Variables Range
x [10, 990]
y [10, 490]

Productivity [1, 50]
Production [1, 50]

Wage [0, 50]
Savings [0, 10]



the more structured and directed search process that NSGA2
was performing. Nevertheless, and within the computational
resources afforded to this exploratory study, the exploration
process of RS was clearly more convenient to the application
at hand, compared to the balanced exploration/exploitation
approach of evolutionary algorithms in general.

In Figures 3 and 4, the same observations presented for the
fox-rabbit model were observed for the skin and economic
agent based models. In fact, because the economic and skin
models involved 3 objective functions (i.e. 3 agents’ invariant
lists to build) compared to the two objective nature of the
fox-rabbit model, and because of the increased complexity
of the economic and skin models compared to the fox-rabbit
model, RS seemed to even better perform compared to NSGA2
for these last 2 models. Exploration, even a random one,
was clearly better valued for capturing the behaviour of these
models.

In Figures 5, 6 and 7, the generational behaviour of RS and
NSGA2 is illustrated for each of the 3 agent based models.
The idea was to compare the quality of the list of invariants
compiled at each generation of the algorithms with respect
to the quality of the list of invariants produced by the other
algorithm at the same generation of each of the 30 runs. In
Figures 5, 6 and 7, the average (out of 30 runs) cumulative
number of violations produced by a certain algorithm with
respect to the other in terms of a certain type of agents was
presented the 20th generation of each run.

For the relatively simple fox-rabbit model, it was observed
that after the 6th generation (out of a total of 20) of each
of the 30 runs, no new invariant violation were produced by
both algorithms. In other words, the final list of invariants
produced after 20 generations for the fox-rabbit model by RS
and NSGA2 was the same list of invariants already compiled
at the 6th generation. From Figure 5, it can be seen that RS
and NSGA2 were both competitive, especially the first 2 to 4
generations, at exploring new model invariants, but RS due to
its pure random exploration nature was doing better the last
few generations (3 to 6).

In Figure 6, for the more complicated skin model, NSGA2
was doing better than RS at the beginning of the search
process (the first few generations) and was producing higher
quality agent invariants for the 3 types of agents, especially
the commited cell agent type (COM). Nevertheless, RS was
eventually producing more general invariants towards the end
of the search process (i.e. towards the last generations). This
was again highlighting that for the computationally expensive
nature of the objective functions used in this study, RS was a
better choice, although evolutionary algorithms are expected
to do better if more number of generations and/or an increased
population of candidate solutions were provided. This would
however be practical if metamodeling techniques are deployed
to substitute the expensive objective functions used and which
consist of simulating agent-based models for a number of
iterations, or if higher computing resources such as grid
or supercomputing are afforded. These suggestions will be
investigated in future work.

Fig. 2. No of invariant violations: Fox-Rabbit Model

Fig. 3. No of invariant violations: Skin Model

In Figure 7, similar observations to the one depicted in
Figures 5 and 6 are shown for the economic model. In fact, for
this ABM, RS seemed to be even more consistent and suitable
for exploring the input domain of the economic model, which
ultimately led to producing more invariant violations compared
to NSGA2.

V. RELATED WORK

In [10], the authors used search based testing to test the
commercial FIFA95 computer game which involves a set of
human controlled agents competing against a set of computer
controlled agents. In [10], the objective was to exercise the
game in order to find possible sequences of player inputs
(controls) that can undermine the enjoyability of the game by



Fig. 5. Average Cumulative No of invariant violations per generation: Fox-Rabbit Model

Fig. 6. Average Cumulative No of invariant violations: Skin Model

Fig. 7. Average Cumulative No of invariant violations: Economic Model



Fig. 4. No of invariant violations: Economic Model

repeatedly allowing to score an easy goal. The authors used a
well-tuned genetic algorithm to search for such sequences and
were successful in identifying sweet spots of action sequences
that consistently led to scoring a goal. Similarly, in [12], [11],
the authors tested an ABM which simulated a city struck
by an earthquake and where autonomous software agents are
taught to evade danger, rescue people and maintain a certain
energy level to survive. The authors tested the design of these
autonomous agents by injecting into their virtual worlds mock
agents that were cooperative and helpful at some times, and
aggressive at other times. The action sequences of the mock
agents were evolved using a genetic algorithm, and the study
succeeded in uncovering some unwanted agent behavior and
design weaknesses.

In [13], the authors proposed the recruitment metaphor
to evaluate “goal-oriented” autonomous agents in particular.
In other words, agents were seen as job candidates and
stakeholder requirements (i.e soft goals such as efficiency,
accuracy, reliability, ...) were used as evaluation criteria and
to formulate fitness functions. Their testing objective was then
to use SBST to search for increasingly demanding test cases
which can reveal how useful a certain agent is.

In a related study by Bongard et al. [14], the authors used a
coevolutionary algorithm in a non-linear system identification
application. More closely, the authors co-evolved a population
of models that approximate a targeted system, and a population
of tests that exercise these candidate models. The tests were
aimed at extracting new outputs from the candidate models
(which mismatch the output responses of the target system to
these same tests). Their objective was to refine the candidate
models to better approximate the targeted system, as opposed
to testing agent-based models.

In [15] and [16], the authors introduced techniques for the
verification of Agent-Based models. In [15], a semi automatic
methodology was suggested for verifying Agent-based sim-
ulations and it involved human expert interaction for model
output validations. In [16], in order to verify and validate
the simulations of ABM, the authors suggested the use of
an overlay layer of listener agents that can be injected into
the simulation to collect and log agents’ data and report the
violations of certain predefined conditions.

Other suggested techniques involving unit testing were also
proposed to test and validate ABMs. These include the use of
unit tests [17] and the use of mock agents as unit tests [18]
for testing specific agents’ functionality. In [19], the authors
suggested the use of mutation testing as a way for evaluating
the reliability of agent-based models, and suggested prototypes
for ABM customized mutation operators.

VI. CONCLUSIONS AND FUTURE WORK

In this empirical study, a multiobjective stochastic search
approach for inferring and refining Agent based models’
specifications is suggested and implemented. The approach is
specifically useful for establishing confidence in agent based
model simulations/predictions in situations where the model-
ers’ knowledge and feedback about the expected behavior of a
certain model is rather limited. The proposed framework can
also serve as an automatic feedback mechanism which can
help the model’s designer to gain more insight on the model
internal structure and functionality. Such information might
then be used by the modelers to further refine the model or
even steer new experimental work. Random Search and Evo-
lutionary algorithms were deployed as the core search process
in this framework, and given the computationally expensive
nature of using model simulations as objective functions, in
this study, we had to limit the number of generations and
size of the manipulated populations of candidate solutions
to 20 and 10 respectively. These configurations are rather
limited for an evolutionary search process, and as a result, the
pure random search process was found to better perform and
produce higher quality list of model invariants which more
closely capture the behaviour of a model. The framework
was however proved useful at automating the process of
reverse engineering and refining model specification from
model simulations, and thus showed a lot of potential for
being refined and used by system modelers for establishing
confidence in a certain model prediction, a requirement very
much important and beneficial. This method of verification can
be compared to previous research where unit testing [18] and
[15] use a human interaction to test the results. By automating
the process using the framework, invariants and rules can be
identified easily to deduce if the model has performed as not
expected by the modeler.

As a future work, there is scope to investigate assigning
different weights and priorities among the different objectives
being optimised (i.e. the different agents’ whose invariants
are sought to to captured and refined). In addition, meta-
modeling techniques will be investigated to substitute the



use of simulating agent based models as objective functions.
This will make it more convenient and practical to deploy
intelligent search algorithms such as evolutionary algorithms
to more efficiently search of agent invariants. Additionaly,
future plans include running further experiments with various
number of generations and population sizes to carry out a finer-
grained analysis on the impact of the exploration/exploitation
processes.

VII. ACKNOWLEDGMENTS

This research is supported by EPSRC grant EP/G009600/1
(Automated Discovery of Emergent Misbehaviour).

REFERENCES

[1] Deb, K. and Pratap, A. and Agarwal, S. and Meyarivan, T., IEEE
Transactions on Evolutionary Computation, A fast and elitist
multiobjective genetic algorithm: NSGA-II,2,182-197,6,2002.

[2] Chang, G. and Roth, C. B. and Reyes, C. L. and Pornillos, O. and
Chen, Y.-J. and Chen, A. P.,5807,Science,1875, Retraction of Pornillos
et al., Science 310 (5756) 1950-1953. Retraction of Reyes and Chang,
Science 308 (5724) 1028-1031. Retraction of Chang and Roth, Science
293 (5536) 1793-1800,314,2006.

[3] L. Hatton, IEEE Computational Science and Engineering,2738, The T
experiments: errors in scientific software, 4,1997.

[4] K. Simons, New England Economic Review,17-28, Model error -
evaluation of various finance models,1997.

[5] Holland, J. H. and Miller, J. H.,The American Economic Review, 2,
365-370, Artificial Adaptive Agents in Economic Theory, 81, 1991.

[6] M. Kiran and S. Coakley and N. Walkinshaw and P. McMinn and M.
Holcombe, Biosystems, Validation and Discovery from Computational
Biology Models,93,141-150,1-2,2008.

[7] Ernst, M. D. and Perkins, J. H. and Guo, P. J. and McCamant, S. and
Pacheco, C. and Tschantz, M. S. and Xiao, C, Science of Computer
Programming, The Daikon system for dynamic detection of likely
invariants,2007.

[8] FLAME: Flexible Large-scale Agent-based Modelling Environment,
http://www.flame.ac.uk.

[9] Sun, T. and McMinn, P. and Coakley, S. and Holcombe, M. and
Smallwood, R. and MacNeil, S.,17,Journal of the Royal Society
Interface,1077-1092,An Integrated Systems Biology Approach to
Understanding the Rules of Keratinocyte Colony Formation,4,2007.

[10] B. Chan and J. Denzinger and D. Gates and K. Loose and J.
Buchanan, Proc. of the Congress on Evolutionary Computation,
CEC2004,125–132,Evolutionary Behavior Testing of Commercial
Computer Games,2004.

[11] J. Denzinger and J. Kidney,Proc. of the International Conference on
Intelligent Agent Technology (IAT),23–29, Evaluating Different Genetic
Operators in the Testing for Unwanted Emmergent Behavior using
Evolutionary Learning of Behavior,2006.

[12] J. Kidney and J. Denzinger,Proc. of the 17th European Conference on
Artificial Intelligence (ECAI),260–264, Testing the Limits of Emergent
Behavior in MAS using Learning of Cooperative Behavior,2006.

[13] Cu D. Nguyen and S. Miles and A. Perini and P. Tonella and M.
Harman and M. Luck,Proc. of AAMAS 2009,521–528,Evolutionary
Testing of Autonomous Software Agents,2009.

[14] J. C. Bongard and H. Lipson,IEEE Transactions on Evolutionary
Computation,4,361 - 384,Nonlinear System Identification Using
Coevolution of Models and Tests,9,2005.

[15] F. Klügl,Proc. of the 2008 ACM symposium on Applied computing.,39-
43,A Validation Methodology for Agent-Based Simulations,2008.

[16] M. Niazi and A. Hussain and M. Kolberg, Proc. of the Third Workshop
on Multi-Agent Systems and Simulation, Verification and Validation of
Agent-Based Simulations using the VOMAS approach,2009.

[17] Zhiyong Zhang and John Thangarajah and Lin Padgham, Proc. of
the 2nd International Working Conference on Evaluation of Novel
Approaches to Software Engineering, AUTOMATED UNIT TESTING
FOR AGENT SYSTEMS,2007.

[18] Roberta Coelho and Uir Kulesza and Arndt von Staa and Carlos Lucena,
Proc. of the 2006 international workshop on Software engineering for
large-scale multi-agent systems, 83-90, Unit testing in multi-agent
systems using mock agents and aspects,2006.

[19] Salem Adra and Phil McMinn, Proc. of 5th International Workshop on
Mutation Analysis (Mutation 2010), Mutation Operators for Agent-Based
Models, 2010.


