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Abstract—Responsively designed web pages adjust their layout
according to the viewport width of the device in use. Although
tools exist to help developers test the layout of a responsive
web page, they often rely on humans to flag problems. Yet,
the considerable number of web-enabled devices with unique
viewport widths makes this manual process both time-consuming
and error-prone. Capable of detecting some common responsive
layout failures, the REDECHECK tool partially automates this
process. Since REDECHECK focuses on a web page’s document
object model (DOM), some of the issues it finds are not observable
by humans. This paper presents a tool, called VISER, that renders
a REDECHECK-reported layout issue in a browser, adjusting the
opacity of certain elements and checking for a visible difference.
Unless VISER classifies an issue as a human-observable layout
failure, a web developer can ignore it. This paper’s experiments
reveal the benefit of using VISER to support automated visual
verification of layout failures in responsively designed web pages.
VISER automatically classified all of the 117 layout failures that
REDECHECK reported for 20 web pages, each of which had
to be manually analyzed in a prior study. VISER’s automated
manipulation of element opacity also highlighted manual classifi-
cation’s subjectivity: it categorized 28 issues differently to manual
analysis, including three correctly reclassified as false positives.

I. INTRODUCTION

Given the variety of web-enabled devices, including phones,
tablets, laptops, and desktops, web developers can no longer
maintain a single “mobile version” of a web site alongside
a standard desktop version [1]. Instead, web developers must
fully accommodate the wide variety of devices used to view
their sites. Responsive Web Design (RWD) is a design and
implementation paradigm enabling developers to build web
pages that provide an equivalent user experience across dif-
ferent devices [2]. RWD enables a web page to dynamically
adapt its layout by “responding” to the viewport width of the
browser running on a device. Rather than requiring users to
pan around or zoom on a web page, a properly responsively
designed page only requires a user to vertically scroll [3].

Even though RWD helps to address the challenges of deal-
ing with different viewport widths, it can introduce new types
of presentational layout failures, referred to as “responsive
layout failures” (RLFs) [4]. As the viewport width changes,
web page elements can start to overlap one another, protrude
from their containing elements, or disappear off the edge of
the viewable portion of the page. At best, this makes for a
poor presentation of the page, leading to lost credibility [5]
and decreased user loyalty [6]; at worst it can lead to critical
parts of the web application being inaccessible or unusable [7].

In addition to the “Responsive Design Mode” in the de-
veloper tools of web browsers like Firefox and Chrome, other
tools exist to help developers test their responsive designs. For
instance, viewport resizers (e.g., [8]–[10]) automatically resize
browsers to common viewport widths used by web-enabled
devices, conveniently allowing developers to see how their
content is rendered. However, all of these tools still require
a human to manually identify problems on the page.

The REDECHECK tool [11] helps a developer to identify
several key types of RLFs, such as web page elements that
are separated at one viewport width but then appear to collide
with one another at a narrower viewport size. However,
REDECHECK’s analysis is limited to the document object
model (DOM) of the page — a data structure which, among
other things, stores the dimensions of each HTML element
and how it is laid out on a page [12]. As a result, many
of the issues that REDECHECK detects may not actually be
observable in practice. For example, while the bounding boxes
of two elements may overlap on a page, their backgrounds may
be transparent and their respective content non-overlapping.

Human verification of many reported layout issues can be a
time consuming, inconsistent, and error-prone task. The devel-
oper must first decode the report produced by REDECHECK,
recreate the environment by starting the same web browser,
navigate to the page, set the same viewport size, scroll to
the graphical element in question, and visually inspect the
potential failure. Each layout failure reported by REDECHECK
has a viewport range: the minimum viewport width at which
the issue starts to occur and the maximum viewport width at
which it is still present. Since REDECHECK is DOM-based,
it is possible for a failure to be observable in some parts of
this range and non-observable in others. This means that it
is important for the humans who verify a layout failure to
identify and inspect the appropriate viewport width(s).

This paper presents “VISER” (VISual verifiER), a visual
verification tool that automatically filters the DOM-based
issues raised by REDECHECK. By adjusting the opacity of the
elements involved in a potential layout failure and analyzing
the difference in the pixels making up those elements, VISER
can quickly detect the human-observable visual changes. Be-
cause it automatically filters out the non-observable issues,
only presenting the observable ones to a developer, VISER
makes the failure verification process fast and repeatable.

We performed an empirical evaluation of VISER on 20
web pages previously used to evaluate REDECHECK. In that
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Fig. 1: Three snapshots of a real-world web page that capture a correct layout, in (a), and two distinct collision responsive
layout failures, in (b) and (c), as reported by REDECHECK and correctly classified by VISER without human intervention.

previous study, the responsive layout failures had to be verified
manually. That is, humans had to classify each failure report
produced by REDECHECK, consisting of a set of HTML ele-
ments for one or more viewport ranges, as belonging to one of
three categories: true positives (TPs), false positives (FPs), and
“non-observable issues” (NOIs). In this paper’s study, VISER
automatically classified all 117 responsive layout failures.

Using VISER also surfaced some of the subjectivity in man-
ually classifying layout issues: 28 failures were categorized
differently by VISER, including three that were reclassified as
false positives. Furthermore, VISER categorized a significant
number of these RLFs differently depending on the point
in the viewport range chosen to inspect them. This finding
highlights the importance on the viewport point chosen to
inspect failures: If humans inspect the layout failure manually,
they must inspect multiple viewports to ensure the failure’s
correct classification, a task that is fully automated by VISER.

The contributions of this paper are therefore as follows:
1) A new technique, implemented in a tool called VISER,

that automates a previously manual approach to verify-
ing responsive layout failures reported by REDECHECK.

2) An empirical evaluation that compares the automated
results produced by VISER to those arising from a
previously published manual analysis, finding that:

a) VISER accurately classifies the potential responsive
layout failures identified by REDECHECK, auto-
matically classifying all 117 from prior work.

b) VISER can automate the manual analysis and elim-
inate its subjectivity: compared to humans, VISER
categorized 28 failures differently, including three
that were ultimately reclassified as false positives.

c) VISER is fast to run, requiring no more than a few
seconds to complete all of its automated analyses.

II. BACKGROUND

The presentational layer of a web application consists of a
series of web pages, which are rendered by a web browser
on the basis of several resources. A developer first creates a

Hypertext Markup Language (HTML) document, that specifies
the basic display structure of a page. An HTML document
consists of a series of HTML elements that describe text,
images, multimedia, forms, scripts, and other content [12].
Developers associate Cascading Style Sheets (CSS) with an
HTML document to specify how a browser should graphically
style the HTML elements when rendering the page. Rules
in the CSS can style the size and position of elements and
can control, for instance, whether the text within them should
be rendered in bold face or italic [13]. A browser parses
the elements in an HTML document, along with the CSS
rules, to form the Document Object Model (DOM) of the
web page. The DOM is a tree data structure that represents
the page’s visual presentation [12]. A developer can query
or modify the page’s DOM (and consequently, its visual
appearance) through the creation and use of scripts run by the
browser. An HTML element’s properties, such as its width or
height, can be assessed by specifying an eXtensible Markup
Language (XML) path expression, known as its XPath. The
final arrangement of HTML elements on a web page, as
rendered by the web browser, is referred to as its layout.

After overviewing the principles of responsive web design,
the remainder of this section first explains how testing tools
like REDECHECK automatically detect responsive layout fail-
ures. It then surfaces the challenges associated with triaging
non-observable issues, thereby setting the stage for VISER.

A. Responsive Web Design

The responsive web design paradigm [2] incorporates the
concepts of fluid grids, flexible media, and media queries,
each of which support the web page design strategies for
accommodating a range of viewport sizes. Often supported
by frameworks such as Bootstrap [14] and Foundation [15],
these concepts are implemented using HTML and CSS.
Fluid grids allow HTML elements to be arranged in layouts
that smoothly adjust according to the width of the view-
port, while flexible media refer to images or video con-
tent that stretches or shrinks in size depending on available
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Fig. 2: Three examples of the types of RLFs reported by
REDECHECK and automatically classified by VISER. The left-
hand side of this figure furnishes a responsively designed
web page with a correct layout. The right-hand side depicts a
situation in which a responsive layout failure manifests itself.

screen space. Finally, media queries allow developers to
activate specific CSS rules depending on the user’s device
or browser. For example, any CSS rules contained within
the media query @media(max-width:767px) would be en-
abled if a user’s device had a narrow screen width, while
@media(min-width:1200px) would trigger CSS rules when
the page is viewed on the wide-screen of a desktop computer.

B. Testing to Detect Responsive Layout Failures

Even with the RWD paradigm, web developers may intro-
duce a wide variety of presentation failures [16], including
responsive layout failures (RLFs) [4], for example the one
shown in Figure 1. At a viewport width of 966 pixels (part
(a)), no problems are apparent. Yet, the space between the third
oval and the elements to the right of it becomes constricted at
a viewport width of 934 pixels (part (b)). At a viewport width
of 933 pixels (part (c)), the third oval element wraps to the
next line, partially overlaying the content above it.

One technique, implemented into the REDECHECK tool [4],
detects some of the common RLFs in responsively designed
web pages. Element Collision failures occur in responsive
design where the display space is sufficient to accommodate
two HTML elements (Figure 2(a)), yet as the viewport be-
comes narrower, space between the elements tightens until
they start to overlap one another (Figure 2(b)). Along with
causing unsightly presentational effects, this can lead to a loss
of functionality if important links and/or buttons are obscured.
Element Protrusion failures occur when HTML elements
“pop” out of their containers due to reduced display space.
At a wide viewport width (Figure 2(c)), the available display
space allows for the element to be rendered correctly within

its container. However, as display space becomes smaller, the
container starts to shrink. The containing element reaches its
minimum size, which may be constrained by the text rendered
within it. Eventually, the containing element protrudes out
of its container (Figure 2(d)). Viewport Protrusion is similar
to element protrusion, except that an HTML element has
protruded out of the viewport itself — that is, it has extended
out of the body HTML element of the page (Figure 2(e)–(f)).

C. The REDECHECK Tool for Testing Responsive Web Pages

The REDECHECK (REsponsive DEsign CHECKer, pro-
nounced “Ready Check”) tool detects these RLFs by extracting
a Responsive Layout Graph (RLG) of a web page [11]. An
RLG is a model of the responsive layout behavior of a web
page [17]. It represents, at different viewport widths, both the
relative alignment of HTML elements with respect to one
another (e.g., “above”, “below”, “contained”, and “within”)
and which HTML elements are (and are not) set to be visible
at each width. When constructing an RLG, REDECHECK col-
lates information by driving a desktop browser and rendering
a web page at different viewport widths in a specified range.
This viewport range typically starts with a narrow width, 320
pixels, akin to a mobile phone; extending to a more spacious
width of 1400 pixels, a viewport width corresponding to a
browser open on a desktop computer. REDECHECK extracts
the DOM of the web page rendered at each width and uses it
to find the relative alignment of HTML elements.

REDECHECK uses the RLG to find potential layout failures,
such as those involving element collisions, by checking for
pairs of elements that were not overlapping at a particular
viewport width, but then overlap at a narrower width [4].
Intuitively, REDECHECK uses the layout at wider viewports
to cross-check narrower widths. If pairs of elements were
not overlapping or protruding at a particular viewport width
but then do so as the viewport narrows, an RLF is likely to
have manifested. This type of checking across viewport widths
makes REDECHECK less likely to report false negatives than if
a developer was to use, for example, the Fighting Layout Bugs
tool [18] that reports anomalies at single viewport widths.

When REDECHECK finds an RLF it produces a report that
states (a) the failure type (e.g., element collision or element
protrusion); (b) the viewport range of the RLF (i.e., the
minimum and maximum viewport width for which the RLF
was evident) and finally (c) the XPaths of the HTML elements
involved [11]. The next subsection summarizes results from
prior studies of REDECHECK, pointing out that, even though
the tool improves the testing process, it may highlight certain
layout issues that, in practice, developers do not focus on first.

D. Non-Observables Issues and the REDECHECK Tool

In a prior empirical study, REDECHECK found RLFs in 16
of 26 web pages studied, and 33 distinct RLFs in total [4].
However, since REDECHECK is based on the DOM, an
abstract representation of a web page, one particular problem
inherent in its technique is distinguishing issues that are
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Fig. 3: Wireframes of two HTML elements, in light and dark gray, with a white border that is the same color as the background
of the page (part (a)). Parts (b) and (c) respectively depict elements with a non-observable collision and an observable collision.
Finally, part (d) shows how VISER manipulates opacity to perform automatic visual detection of the responsive layout failure.

observable in practice from those that are not. Figure 3
highlights this problem, depicting two HTML elements in light
and dark gray, with a white border that is the same color as
the background of the web page, as shown in part (a). Parts
(b) and (c) reveal non-observable and observable collisions,
respectively. In part (b), the two elements are technically
colliding, but a person testing this web page is unlikely to see
this as a problem because only the borders of the elements are
overlapping — and they are the same color as the background.

Figure 3(c) shows how an observable issue arises as a result
of the dark gray element’s content becoming obscured by
that of the light gray one. As it does not take into account
visual details beyond the size and co-ordinates of the elements
concerned, REDECHECK cannot distinguish between the two
scenarios in part (b) and (c) and thus reports them both.
While the non-observable issues exemplified by part (b) of
both Figures 1 and 3 may be of interest to testers — they are
latent issues that could manifest in visible RLFs in different
contexts — they are unlikely to be a high-priority compared
to the actual visual defect in part (c) of these figures. Yet,
REDECHECK offers no way to distinguish non-observable
issues from true positives, thereby limiting its effectiveness.
VISER, introduced in the next section, solves this problem.

III. AUTOMATIC VISUAL VERIFICATION OF FAILURES

Figure 4 outlines VISER’s approach to automatic visual
verification of NOIs, comparing it with the series of manual
steps that are otherwise required. After a developer runs RE-
DECHECK on a web page, it reports the RLFs that it detects, if
any. Each report states the RLF type (e.g., element protrusion),
the range of viewport widths for which the RLF was deemed
to occur (in the form of a lower and an upper bound), and
the XPaths of the HTML elements involved. If VISER is not
used, the developer must manually decide what do with these
reports. This involves loading up the web page; setting the
viewport width of their browser to one within the reported
range; manually identifying the elements and scrolling to the
failure if necessary; and finally deciding if the RLF is a true
positive, false positive, or an NOI. VISER automates these
steps. The web page explorer component opens the browser,
sets the viewport width and locates the faulty elements. It first
crosschecks REDECHECK’s result by examining the DOM in

the DOM Filter step, reporting any RLFs believed to be false
positives after inspecting the DOM. The final classification is
automatically performed by the image analyzer component.

The image analysis involves the investigation of specific
regions of a web page, which we refer to as areas of concern
(AOCs). An AOC bounds a rectangle pertaining to the ele-
ments involved in a layout failure where its graphical presence
is suspected to have inadvertently overwritten other graphics or
content on the page, or to have been written to the page out of
position. The aim of the image analysis is to determine if this
is the case (i.e., the RLF produces visible, observable effects).
For example, if the misplaced element has no content and is
transparent, the RLF will not be detectable by a human and
thus a failure report produced by REDECHECK will be of little
concern to developers. After describing how VISER identifies
AOCs for different types of RLF, the remainder of this section
details the image analysis process and RLF classification.

A. Identifying Areas of Concern (AOCs)

Figure 5 summarizes the ways in which two HTML ele-
ments can be arranged spatially with respect to one another.
The two elements are depicted by dark gray and light gray
boxes, respectively. The figure identifies three particular sce-
narios: “Contained”, where one element resides inside the
bounds of another; “Overlapped”, where the two elements
share some, but not all, of the same display space; and finally
“Separated”, where the two elements are set completely apart
from one another. The figure then shows how AOCs are
determined for each type of RLF with respect to each scenario.
For element collision, the AOC is the portion of the secondary
(light gray) element that is contained within the first (A in
the fully contained scenario, or B in the overlapped scenario).
For element protrusion, there are two potential AOCs. The
first is the overlapped portion (B), if it exists; and the second
the non-overlapping portion (C in the overlapped scenario, D
in the separated scenario). The two portions are treated as
separate AOCs to simplify the image analysis, which needs
to take into account the fact that the foreground element is
overlaid on different background elements. The same is true
for viewport protrusion, except for that, in this case, the dark
gray background element corresponds to the body element of
the web page — the basic container for all web page elements.
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Fig. 4: The high-level architecture of the VISER tool for the automatic visual verification of layout failures. Along with the
external input sources, this figure also shows a manual approach to verification and classification that requires a human expert.

B. Verifying Presentation Failures

Once an AOC has been identified by the method detailed in
the last subsection, image analysis tries to determine whether
or not the HTML elements involved in the RLF — which
are often stacked on top of one another — render different
content in the same space or out of position. The approach
works to “reveal” the different layers of the AOC by removing
the HTML elements concerned from the top level down to the
background, systematically removing each element involved in
the failure. (As an example, Figure 3(d) shows the stacking of
elements involved in an element collision and the different
“layers” that are involved.) A snapshot image is taken of
the AOC at each layer. The layers are then compared for
differences. If there are any, then VISER classifies the RLF
as being visible (i.e., it is a true positive). If there are no
differences, then the RLF is categorized as non-observable.

Our technique accesses different graphical layers in the
display space by manipulating the opacity CSS property of
HTML elements, thus making it and its descendants invisible.
We decided to use opacity, as opposed to removing elements
completely, because removing elements can impact the layout
of the remaining HTML elements on the page [13], thus
potentially interfering with the classification. By instead ma-
nipulating the element’s opacity, the element is still “there” as
far as the layout is concerned, but the elements stacked below
it are revealed for the purposes of taking a snapshot. This
method also has the advantage of being browser-independent.

A technical inconvenience arises when the AOC is larger
than the portion of the web page currently viewable, due to
the viewport size corresponding to the RLF, a situation that
is common with viewport protrusion failures. Since the page’s
responsive design is likely to dictate that the failure no longer
occurs, in general the viewport size cannot be increased to
bring these elements back into view for snapshotting. In this
scenario, VISER horizontally scrolls the page, taking snapshots
of individual portions of the page and “sewing” the AOC
together as necessary. Regrettably, it is not always possible
to scroll and bring protruding elements into view. In these
circumstances, VISER performs a “best effort” approximation
of the AOC by altering the margins of the offending elements
to negative values, thereby trying to move them into view.

Algorithm 1 furnishes the top-level algorithm for VISER.
This part of VISER finds the initial AOC to analyze, identified
as in Figure 5. The image analysis is then performed by
one or both of Algorithms 2 and 3, depending on the layout

Layout scenario

A

Contained

B C

Overlapped

D

Separated
Element Collision A B -

Element Protrusion - B, C D
Viewport Protrusion - B, C D

Fig. 5: Identifying “areas of concern” (AOCs) for different
RLFs and layout scenarios involving two distinct HTML
elements, as depicted by the light gray and dark gray boxes.

scenario. If one element contains the other, as with the
contained scenario of Figure 5, or part of the other, as with the
overlapped scenario, control passes to Algorithm 2. Depending
on the scenario, the AOC is A or B, as shown by Figure 5.

Algorithm 2 takes the two HTML elements involved (i.e.,
the dark gray and light gray elements of Figure 5) and de-
creases their opacity to 0%, ensuring they are transparent using
MAKETRANSPARENT. Three snapshots are then taken, first of
the background (where both elements are transparent), which
is saved in imgNoElemets . Then, restoring back (i.e., the dark
gray element) to its original opacity level (using the RESTORE
procedure) a further snapshot, imgBack , is taken. Finally,
the foreground element is restored, and another snapshot is
taken of the AOC and saved to imgFront . These three images
are then compared in line 9 of the algorithm. If there are
differences, and the failure type is an element collision, then
the RLF is deemed to be visible, and the algorithm returns a
true positive (TP), else the verdict is a non-observable issue
(NOI). If there are differences for the other two failure types
(i.e., element protrusion and viewport protrusion), then the
AOC, when separated from the background element, must be
analyzed to see if the content has spilled outside its containing
element. In this case, control passes to Algorithm 3, with the
AOC now known to be C, as per Figure 5.

In the separated scenario, Algorithm 3 may also be invoked
directly from Algorithm 1, with the AOC being identified
as D, as per Figure 5. The algorithm proceeds in a similar
fashion to that of Algorithm 2, except there are only two
layers to consider — that with the foreground element (i.e.,
the light gray element of Figure 5) present, and that where it
is transparent. The two snapshots are compared. If the images
are different, then the algorithm returns a true positive (i.e., the



Algorithm 1 Top-Level VISER Algorithm

INPUT: Two HTML elements, back and front , and the failure type, ft .
OUTPUT: TP if the RLF is deemed observable, NOI if it is not.

1: procedure VISER(back , front, ft)
2: scenario ← GETSCENARIO(back , front)
3: if scenario = contained then
4: AOC ← GETCONTAINEDAOC(back , front) . AOC = A (Figure 5)
5: return CONTAINEDAOCIMAGEANALYSIS(back , front, ft,AOC )

6: if scenario = overlapped then
7: AOC ← GETCONTAINEDAOC(back , front) . AOC = B (Figure 5)
8: return CONTAINEDAOCIMAGEANALYSIS(back , front, ft,AOC )

9: if scenario = separated then
10: AOC ← GETDETACHEDAOC(back , front) . AOC = D (Figure 5)
11: return DETACHEDAOCIMAGEANALYSIS(front,AOC )

Algorithm 2 Image Analysis for Contained AOCs

INPUT: Two HTML elements, back and front , the failure type, ft , the AOC AOC .
OUTPUT: TP if the RLF is deemed observable, NOI if it is not.

1: procedure CONTAINEDAOCIMAGEANALYSIS(back , front, ft,AOC )
2: back ← MAKETRANSPARENT(back)
3: front ← MAKETRANSPARENT(front)
4: imgNoElements ← SNAPSHOT(AOC )
5: back ← RESTORE(back)
6: imgBack ← SNAPSHOT(AOC )
7: front ← RESTORE(front)
8: imgFront ← SNAPSHOT(AOC )
9: if imgNoElements 6= imgBack ∧ imgNoElements 6= imgFront then

10: if ft = element collision then
11: return TP
12: if ft = element protrusion ∨ ft = viewport protrusion then
13: AOC ← GETDETACHEDAOC(back , front) . AOC =C (Figure 5)
14: return DETACHEDAOCIMAGEANALYSIS(front,AOC )

15: return NOI

RLF is deemed to be visible), else the non-difference between
the layers means that the RLF is non-observable.

As stated in Section II, REDECHECK reports, for each RLF,
a viewport range that is the narrowest to the widest viewport
width for which the RLF is manifested at the DOM level. Since
VISER has a choice of the viewport at which it can visually
inspect the RLF, we made this a configurable parameter of the
tool. The default is to look at the narrowest viewport width
(i.e., the “low end” of the range) since RLFs are more likely
to be noticeable at screen sizes with tighter layout constraints
than at wider viewports that are less constrained for space.

IV. EMPIRICAL EVALUATION

To investigate the effectiveness and efficiency of VISER,
we ran it with the web pages used in the previous evaluation
of REDECHECK [4], for which the RLFs that REDECHECK
identified were classified manually by Walsh et al. Therefore,
we adopt the manual classification performed in that study as a
baseline to which we compare VISER. The experimental eval-
uation focuses on answering these three research questions:
RQ1: Can the technique automatically distinguish non-
observable issues from true positives and how does it
compare to manual classification? In this research question,
we compare VISER to the results of the manual classification,
using VISER’s default setting of performing the image analysis
at the narrowest viewport width reported for each RLF.
RQ2: Within the viewport range of a presentation failure,
what is the point of inspection that has the best chance

Algorithm 3 Image Analysis for Detached AOCs

INPUT: An HTML element, front , and the AOC AOC .
OUTPUT: TP if the RLF is deemed observable, NOI if it is not.

1: procedure DETACHEDAOCIMAGEANALYSIS(front,AOC )
2: front ← MAKETRANSPARENT(front)
3: imgNoElement ← SNAPSHOT(AOC )
4: front ← RESTORE(front)
5: imgFront ← SNAPSHOT(AOC )
6: if imgNoElement 6= imgFront then
7: return TP
8: return NOI

of revealing a true positive? In this research question,
we determine if it is best to perform image analysis at the
narrowest viewport width for the RLF. We compare VISER to
the results of the manual classification process for three points
in the RLF’s viewport range: the minimum, or narrowest (as
per RQ1), the middle of the range, and the maximum width.

RQ3: How long does the technique take to verify a presen-
tation failure? In this research question, we investigate how
efficient VISER is to run, assessing if it is a practical addition
to REDECHECK for a developer’s RWD testing toolset.

A. Experimental Subjects

We selected the subjects from the pool of web pages
used to evaluate REDECHECK’s effectiveness at detecting
common RLF types [4]. REDECHECK is designed to check
more types of RLF that cannot result in NOIs. While the
original REDECHECK study involved 26 pages, not all of them
involved the types of RLF on which this paper focuses; i.e.,
element collision, element protrusion, and viewport protrusion.
We therefore limited our empirical comparison to the 20 web
pages that concerned only these potentially NOI-involving
RLF types. Furthermore, we could not re-use the StumbleUpon
subject. We found that the tool previously used to download
all of this subject’s resources (see [4] for details) did not work
correctly. Since the web page was no longer available in its
original form, we could not reconstruct the subject’s archive
and thus, despite the fact that the original study reported this
subject as involving an element collision failure, we had to
exclude it. This gave us a total of 117 RLFs, originally reported
by REDECHECK, for use in our evaluation of VISER.

B. Experimental Methodology

To evaluate VISER, we attempted to match the execution en-
vironment, as closely as is possible, to the setup for the original
REDECHECK experiments, thereby avoiding discrepancies in
the results that might be due to differences in the experimental
setup between the two evaluations. We therefore ran VISER
on an iMac with 8GB of RAM, running OS version 10.13
and using Firefox browser version 46. As with REDECHECK,
VISER uses Selenium WebDriver [19] to interact with the web
browser to render web pages and visually verify the failures.
VISER also rendered the web pages in a browser window
without scrollbars and at fixed viewport height of 1000 pixels.

To answer RQ1, we ran VISER on each of the 117 RLFs to
reach an automatic classification. VISER was configured to use



the minimum viewport width reported for the range of each
RLF concerned. We then checked whether VISER agreed with
the manual categorization of the RLF as decided in the original
study by Walsh et al. [4]: true positive (TPs, an observable
failure), non-observable issue (NOI), or false positive (FP, no
failure). FPs are failures reported by REDECHECK that do
not exhibit an issue visually in the design of the web page
or in its internal DOM representation. We then calculated the
percentage agreement of VISER with the previous manual clas-
sification, investigating any differences in the categorization.

To answer RQ2, we followed the same methodology as
RQ1, but ran VISER using additional inspection points: the
middle of the range reported for the RLF by REDECHECK
and the maximum point (i.e., the upper bound) of the range.
While running this experiment, VISER led us to the discovery
of a defect in REDECHECK. For 35 viewport protrusion
RLFs, REDECHECK incorrectly reported the upper bound of
the viewport range for the failure. Rather than rendering a
page at each possible viewport width to construct the RLG,
REDECHECK normally samples the entire range by rendering
the page at intervals, performing a binary search between the
last two sampled points to identify the precise viewport widths
at which the relative alignment of two HTML elements, or
the visibility of an individual element, changed. Since the
RLF is a false positive, the incorrectly reported upper bound
had a knock-on effect on the result of VISER. We found that
we could get REDECHECK to produce the correct results by
changing its interval size to 1. After reconfiguration, we re-ran
REDECHECK for the pages involving these particular RLFs.

To answer RQ3, we ran VISER for every RLF, examining
each one at the lower bound of the range reported by RE-
DECHECK, and recorded the time taken for VISER to run in
each instance. We repeated this 30 times for each RLF to
obtain a reliable estimate of the running time of VISER and to
minimize chance effects that might be caused by, for example,
the underlying operating system hosting the experiments.

C. Threats to Validity

The validity of this paper’s experiments hinges on accu-
rately matching the previously published manual classification
with the classifications automatically produced by VISER.
Since the manual results from the experimental evaluation
of REDECHECK [4] did not include the XPath of offend-
ing elements, the failures were manually matched using the
snapshots available. These snapshots, combined with the type
of failure, range, and name of the web page enabled us to
confidently perform the matching. The second threat to validity
is a defective implementation of the VISER tool. To control
this threat, we configured VISER to keep a record of all the
images used to evaluate each failure. Furthermore, VISER
also maintained a record of the coordinates of each offending
element. We consulted these records during the examination
of all mismatched classifications, thereby helping us to ensure
that the prototype operated correctly. To further establish a
confidence in the correctness of VISER, we regularly per-
formed additional manual and automated testing. Finally, to

support the replication of this paper’s experiments, we have
made the VISER prototype and its documentation publicly
available at https://github.com/redecheck/viser.

D. Experimental Results

RQ1: Table I furnishes the results from running VISER
on the outputs of REDECHECK and their agreement with
the manual classification performed by Walsh et al. [4]. For
completeness, Table II gives the full, broken down set of
manually-classified results from the original Walsh et al. study.

For this research question, we focus on the results from
the “Minimum” segment of Table I. The results show that
VISER had an 87.2% overall agreement with the manual
classification. The table breaks this result down by RLF type.
The “Agreement with manual” section shows the ratio of
failures for VISER and manual classification, resulting in
the reported percentages. The second number is the manual
classification total (drawn from the totals in Table II), while the
first is the number of those failures that were categorized in the
same manner by VISER. At 93.5%, the best level of agreement
between manual and VISER is for element collision failures.

Table I shows that there were 15 instances where VISER’s
classification of an RLF did not agree with the manual
outcome. We discuss these 15 instances in three different
categories: subjective, obscured, and misclassified RLFs.

Seven RLFs fall into the subjective category. While these
RLFs have a visual impact, the difference is so small they are
almost imperceptible to humans. Two of these cases involved
changes to two pixels, yielding no real observable visual
difference. While these RLFs are technically TPs, and were
classified as such by VISER, the manual analysis subjectively
categorized them as NOIs. Future work needs to take these
small differences into account when analyzing RLFs.

A further two RLFs were obscured, which occurred with the
ConsumerReports subject. Two RLFs are TPs, and were classi-
fied manually as such, yet VISER reported them as NOIs. This
was because REDECHECK did not report the most specific
elements involved in the failure. While VISER’s analysis was
correct for the elements it was given by REDECHECK, there
was a noticeable visual effect detectable by humans. Since
the manual analysis was not limited to the study of only the
HTML elements reported by REDECHECK, the effect of the
RLF was easily spotted as a TP. This difference is really a
bug in REDECHECK, rather than a problem with VISER.

Three viewport protrusion RLFs were misclassified by
VISER for a variety of reasons. One viewport protrusion failure
with PDF-Escape was classified by VISER as an NOI but was
manually classified as a TP. This is due to the overflow

property of the protruding element being set as hidden. The
protruding content could therefore not be “seen” by VISER.
Future work needs to modify VISER so that it manipulates
the overflow property or tracks missing content from one
viewport width to another. A further viewport protrusion
involved an element that could not be correctly snapshotted
by VISER due to the inherent technical limitations involved
in reaching off-screen elements by scrolling or manipulating



Minimum Middle Maximum

Element Collision Element Protrusion Viewport Protrusion Element Collision Element Protrusion Viewport Protrusion Element Collision Element Protrusion Viewport Protrusion

TP NOI FP TP NOI FP TP NOI FP TP NOI FP TP NOI FP TP NOI FP TP NOI FP TP NOI FP TP NOI FP
3-Minute-Journal - 1 - - 2 - 8 - - - 1 - - 2 - 6 2 - - 1 - - 2 - - 7 1

AirBnb - 1 - - 1 3 1 3 - - 1 - - 1 3 2 2 - - 1 - - 1 3 2 2 -
BugMeNot - - - 1 3 - 1 1 - - - - 1 3 - 1 1 - - - - 1 3 - 1 1 -

CloudConvert 1 - - - - - - - - 1 - - - - - - - - 1 - - - - - - - -
Consumer-Reports 1 6 - 1 3 - 9 3 - - 7 - 1 3 - 9 3 - - 7 - 1 3 - 8 4 -
Covered-Calendar - - - - - - - 3 - - - - - - - - 3 - - - - - - - - 3 -

Days-Old - - - - - - - 1 - - - - - - - - 1 - - - - - - - - 1 -
Dictation - - - - - - - 1 - - - - - - - - 1 - - - - - - - - 1 -
Duolingo 1 - - - - - 2 2 - 1 - - - - - 2 2 - 1 - - - - - 2 2 -

Honey - - - - 8 - - 2 - - - - - 8 - - 2 - - - - - 8 - - 2 -
HotelWifiTest - - - - - - - 1 - - - - - - - - 1 - - - - - - - - 1 -

Mailinator - 1 - - - - - - - - 1 - - - - - - - - 1 - - - - - - -
MidwayMeetup 1 - - - 1 - - 1 - 1 - - - 1 - 1 - - 1 - - - 1 - - 1 -

Pdf-Escape - - - - 6 - 3 1 - - - - - 6 - 2 2 - - - - - 6 - 2 2 -
Pepfeed 4 3 - - 2 - 1 1 - 4 3 - - 2 - - 2 - 4 3 - - 2 - - 2 -

Pocket - 2 - - 3 - - - - - 2 - - 3 - - - - - 2 - - 3 - - - -
TopDocumentary - 7 - - 4 - - - - - 7 - - 4 - - - - - 7 - - 4 - - - -

UserSearch - 1 - - - - - - - - 1 - - - - - - - - 1 - - - - - - -
WhatShouldIReadNext - - - - - - - 2 - - - - - - - - 2 - - - - - - - - 2 -

WillMyPhoneWork 1 - - - 1 - - - - 1 - - - 1 - - - - 1 - - - 1 - - - -

Total 9 22 - 2 34 3 25 22 - 8 23 - 2 34 3 23 24 - 8 23 - 2 34 3 15 31 1
Agreement with manual 7/7 22/24 - 1/3 32/36 - 21/24 19/23 - 7/7 23/24 - 1/3 32/36 - 17/24 17/23 - 7/7 23/24 - 1/3 32/36 - 10/24 18/23 -

Agreement per failure type 93.5% 84.6% 85.1% 96.8% 84.6% 72.3% 96.8% 84.6% 59.6%

Agreement per inspection point 87.2% 82.9% 77.8%

TABLE I: The results from using VISER at three inspection points. The columns labeled “Minimum”, “Middle”, and
“Maximum” show the results after VISER inspected the respective points of the reported failure range. In this table “TP”,
“NOI”, and “FP” respectively denote a true positive, non-observable issue, and false positive, as explained in Section IV-B.
The “Element Collision”, “Element Protrusion”, and “Viewport Protrusion” columns correspond to the RLF types of Figure 2.

Manual

Element Collision Element Protrusion Viewport Protrusion

TP NOI FP TP NOI FP TP NOI FP
3-Minute-Journal - 1 - - 2 - 8 - -

AirBnb - 1 - - 4 - - 4 -
BugMeNot - - - 1 3 - 2 - -

CloudConvert 1 - - - - - - - -
Consumer-Reports - 7 - 1 3 - 9 3 -
Covered-Calendar - - - - - - - 3 -

Days-Old - - - - - - - 1 -
Dictation - - - - - - - 1 -
Duolingo - 1 - - - - 2 2 -

Honey - - - - 8 - - 2 -
HotelWifiTest - - - - - - 1 - -

Mailinator - 1 - - - - - - -
MidwayMeetup 1 - - - 1 - - 1 -

Pdf-Escape - - - 1 5 - 1 3 -
Pepfeed 4 3 - - 2 - 1 1 -

Pocket - 2 - - 3 - - - -
TopDocumentary - 7 - - 4 - - - -

UserSearch - 1 - - - - - - -
WhatShouldIReadNext - - - - - - - 2 -

WillMyPhoneWork 1 - - - 1 - - - -

Total 7 24 - 3 36 - 24 23 -

TABLE II: The manual classification of RLFs from a prior
study [4]. See Table I for a full description of the columns.

the margin property. As such, VISER labelled it as an NOI,
when it is, in fact, a TP. A final viewport protrusion involved
content overflowing out of the viewport that was classified by
the VISER algorithm as an NOI, although the manual analysis
correctly categorized it as a TP. In this case, a human had to
scroll horizontally to read the overflowing content, which did
not line up correctly with elements in the page’s banner.

The final three element protrusion RLFs were misclassified
by REDECHECK. VISER found that these were FPs, since
there was no protrusion at the DOM level. The manual analysis
reported these as NOIs, since there was no visual impact. We
judge the root cause of this to be a bug in REDECHECK’s
collection of DOM information when constructing the RLG.
Conclusion for RQ1: VISER demonstrates high agreement
(87.2%) with manual classification when set to study the
minimum point of the viewport range reported for each RLF.

RQ2: Table I shows the results from when VISER was set
to inspect the minimum and maximum point of the viewport
range for each REDECHECK-reported RLF. The results show
that VISER’s classification can vary, depending on the chosen
inspection point. VISER is more likely to agree with manual

inspection at an RLF’s minimum viewport width. Compared to
an agreement of 87.2% at the minimum width, the agreement
for the middle and maximum point of the range drops to 82.9%
and 77.8%, respectively. We next investigate the reason for the
classification differences at each of these inspection points.
The “Middle” Inspection Point. Overall, there are six RLFs
for which VISER’s classification did not agree with the manual
analysis at the middle of the viewport range, for which there
was agreement at the minimum. Each RLF was a viewport
protrusion; we next discuss these on a case-by-case basis.

For two RLFs, the visibility of the failure varied depending
on the viewport width chosen from the range reported by
REDECHECK. Thus, the change in classification reported by
VISER was correct. These RLFs involve the PDF-Escape and
PepFeed subjects. The manual classification for these two
RLFs is a true positive, which is accurate at the minimum
viewport that REDECHECK reports. However, as space ex-
pands, both RLFs become non-observable in the middle of
the range. Thus, the manual analysis judgement does not hold
for the entire range reported for each RLF, being correct at the
minimum viewport width reported for the RLF, but incorrectly
classified at the wider viewport widths. Importantly, VISER
can automatically detect the differences in observability.

The other four RLFs involved subjective differences and
a misclassification on the part of VISER. For two RLFs,
involving the Airbnb and MidwayMeetup subjects respectively,
VISER coincidently agreed with the manual classification at
the minimum viewport range reported, classifying the RLFs
as NOIs. In both cases, VISER failed to move an element into
view at the minimum width. Thereafter, VISER successfully
snapshots the offending protrusion by altering their margin

property, thus reporting the RLFs at TPs. While VISER is
technically correct, the overspill is small and can be easily
overlooked by a human. Therefore, we categorize these differ-
ences as subjective. The final two RLFs involve the 3-Minute
Journal subject. Both VISER and the manual analysis agree
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Fig. 6: VISER’s execution time across all of the 117 presen-
tation failures and 30 trials and for the three layout failure
types. In these plots the bottom and top whiskers show the
minimum and maximum data values excluding outliers, while
the box itself represents the inter-quartile range, the middle
line represents the median value, and the circles are outliers.

that the RLF is a TP at the minimum viewport width. However,
VISER categorizes them as NOIs at the middle of the range. In
this case, content overflows the viewport, which the tool does
not properly detect, leading to a misclassification by VISER.
The “Maximum” Inspection Point. There were seven RLFs for
which VISER’s classification matched the manual classification
at the minimum and middle inspection point, but not at the
reported maximum viewport width. Again, each RLF was a
viewport protrusion. In each case, the visibility of the RLF
objectively changes, becoming an NOI. Similar to the first
two differences identified for the middle inspection point, the
manual analysis for these RLFs is a single judgement for
the entire range. Hence, it does not take into account the
change from visible to non-observable from narrower to wider
viewport widths. Six of these RLFs are with the 3-Minute
Journal subject, the last RLF is from ConsumerReports.

Another notable result at the maximum point of inspection is
an FP classification of a viewport failure for 3-Minute Journal.
An investigation of the issue revealed that the protruding
element associated with the RLF had a single pixel difference
in width, based on the DOM coordinates as retrieved by the
VISER and REDECHECK, respectively. Since it illustrates the
challenge of automated testing for responsively designed web
pages, we will resolve this difference as part of future work.
Conclusion for RQ2: VISER is more likely to agree with
manual inspection at the minimum viewport width reported for
each RLF. The differences that are evident at wider inspection
points can be explained by three phenomena: (1) the fact that
a single verdict is produced for an RLF when its visibility may
change throughout the viewport range for which it is reported;
(2) the visibility/non-visibility of an RLF can be subjective
as the viewport width changes; and (3) a small number of
misclassified results by VISER, which should form the basis
of future work. Notably, the RLFs involved in the classification
differences were exclusively viewport protrusion failures.

RQ3: To analyze how long it takes to automatically verify a
responsive layout failure, the runtime of the VISER prototype

was recorded across 30 runs. Figure 6 gives a box plot that
visualizes the runtime of the tool when it verifies each type
of failure. Across all failure types and failures, the tool took
0.795 (median) / 0.91 (mean) seconds to automatically verify
an RLF. Importantly, the time to load the web page and resize
the browser were excluded from measurement as this cost
would be shared by any technique, whether manual, semi-
automated, or automated. All of these recorded times account
for the overhead of finding the offending elements, visually
verifying the failure, and writing all diagnostic images to disk.

Figure 6 reveals that the time to verify viewport protrusion
failures has a “longer tail”, resulting in a slightly higher
median runtime. This result is due to the extra work that VISER
does, for this type of RLF, to move elements into view or to
stitch together AOCs that are larger than the viewport.
Conclusion for RQ3: On average, VISER took under a second
to classify an RLF. Since manual analysis can take several
minutes, this means that using VISER is practical and efficient.

E. Discussion

Determining the observability or non-observability of a
presentation failure is not always self evident, making the final
decision subjective. Essentially, the task requires an observer
to recognize a change between what is visually expected and
what is visually apparent. These results show that a manual
approach introduces “exemptions” based on the severity of a
change. For instance, consider an element A that is overlapping
the coordinates of an element B, with n pixels of element
A overlapping n pixels of B. In this case, a human would
decide whether the n pixels of overlap are negligible and if
the overall aesthetics remain satisfactory. Both of these criteria
are not easily defined and remain, to a great extent, subjective.
Nevertheless, we aim to study them as part of future work. For
example, it may be useful to measure the number of changed
pixels, determine if a color change is visible to the human eye,
or introduce heuristics concerning the size of an AOC.

We also note that the previously published manual classi-
fication used in this experiment exhibits multiple concerns.
Analysis of the data showed that, in some cases, the manual
classification was not confined to the type of failure and the
XPaths reported. For instance, an element was reported as
protruding out of its ancestor element, which was an NOI, but
was manually classified as a TP because it was also protruding
out of the parent element. As such, a strong argument can
be made to reclassify a portion of the manual classification.
Although justifiable, we refrained from “tampering” with the
benchmark data so as to not introduce any potential bias.
Moreover, reclassification would not tackle the underlying
subjective nature that is inherent to manual classification.

Since all of the previous research that we investigated in the
area of testing web page presentation failures used the manual
visual verification approach to evaluate a prototype tool, the
accuracy and consistency of the manual approach will influ-
ence, positively or negatively, the research outcomes. Although
we did not investigate the output of other tools and other types
of web page presentation failures, the results make it clear that



there are benefits associated with the automated verification
and classification of web page presentation failures.

Using the CSS opacity property is one way to verify
presentation failures without making VISER browser depen-
dent. Another strategy is to manipulate the visibility

property. However, descendant HTML elements can override
the inheritance of this property, meaning that VISER would
have to traverse the DOM tree, potentially adding extra im-
plementation complexity and execution time overhead. On the
other hand, a limitation of manipulating the opacity property
emerges when the snapshot is taken before the element has
become fully transparent. Strangely, we discovered this to be
the case for one particular viewport protrusion RLF where an
input HTML element was only partially transparent when
snapshots of the AOC were taken. This result suggests that, if
this instance is not in fact an isolated case, VISER may need a
small time delay before a snapshot to overcome this problem.

A final limitation was evident when VISER could not move
into view an element involved in a viewport protrusion failure.
This result means that, in future work, we must develop
strategies to automatically classify RLFs in these scenarios.

V. RELATED WORK

While, to our knowledge, there has been no research on
the automatic visual verification of reported presentation fail-
ures in web pages, there is an extensive literature on web
testing. For instance, WEBDIFF [20], CROSST [21] CROSS-
CHECK [22], and X-PERT [23] are all cross-browser testing
tools that use the DOM and/or screenshots to detect variations
when a page is viewed on different browsers. Similarly,
tools such as WEBSEE [24] and FIERYEYE [25] use the
prior version of a page as an oracle to detect presentation
failures [24]. Unlike this paper, none of the aforementioned
tools manipulate HTML element opacity and, critically, they
all require a human to verify the detected presentation failures.

The initial version of the REDECHECK tool targeted regres-
sion issues by comparing the responsive layout of two versions
of a web page [17]. Walsh et al. subsequently presented the
version of REDECHECK that we used to automatically detect
the RLFs studied in this paper [4]. Like REDECHECK, the
VFDETECTOR tool also finds responsive layout failures, even
when they are triggered by human interaction [26]. While
both of these tools automatically detect different types of
responsive layout failures, a developer must still manually
inspect problems at multiple viewport widths to determine
whether or not they are visible to humans — this is the task
that VISER effectively handles in an automated fashion.

There are also several tools that support the verification of
the layout properties of a web page. For instance, CASSIUS
formalizes some of the semantics of CSS and supports auto-
mated reasoning about the behavior of CSS style sheets [27].
The VIZASSERT tool extends the formal model in CASSIUS,
further supporting the automated verification of a web page’s
accessible layout [28]. Finally, the CORNIPICKLE tool verifies
that a web page supports the layout properties specified by a
tester [29]. Unlike VISER, these tools all require some formal

specification of page layout. Moreover, while these tools focus
on automatically verifying layout properties, the presented tool
instead verifies layout failures reported by a testing tool.

Finally, there are many tools that support the design, im-
plementation, and testing of visual web pages. For instance,
SCRY is a reverse engineering tool that surfaces how changes
in the underlying source code will influence a page’s visual
appearance [30]. Moreover, the VISTA tool repairs the broken
tests that focus on a web page’s visual characteristics [31]
and MFIX repairs problems with the responsive nature of
a page [32]. Since all of these tools complement VISER’s
focus on automatically verifying the layout failures reported
by REDECHECK, together they form a suite of techniques can
improve the quality of responsively designed web pages.

VI. CONCLUSIONS AND FUTURE WORK

While responsive web design helps to simplify the devel-
opment of web front-ends for a wide variety of devices with
differing screen sizes, developers may still create presenta-
tional problems in web pages. Even though the REDECHECK
tool automatically checks a web page for responsive layout
failures, the manual task of verifying REDECHECK’s failure
reports is time consuming, imprecise, and error prone. As
such, this paper presented a new technique to automatically
verify and classify the element collision, element protrusion,
and viewport protrusion failures reported by REDECHECK.
Implemented into a prototype tool called VISER, this auto-
mated technique adjusts the opacity of the HTML elements in
an area of concern, looking for visible differences.

Using the results from a previous manual classification
as a baseline, this paper’s experiments showed that VISER’s
automatically generated classification agrees with the manual
one 87.2% of the time. The results also demonstrate that
VISER is most likely to agree with a manual classification
when it analyzes a web page at the minimum point of the
failure range reported by REDECHECK. Since it takes less
than a second to verify a responsive layout failure, this paper’s
results suggest that VISER is superior to manual classification.

This paper focused on the automatic visual verification of
layout failures in responsively designed web pages. Since it
adopts Selenium [19], VISER also can be used to visually
verify the same failures under different, for instance, runtime
environments or browsers, thereby furnishing better support
for cross-browser testing with tools like CROSSCHECK [22].
Given its promising integrating with REDECHECK, we also
plan to integrate VISER with other tools for responsive web
testing, like VFDETECTOR [26]. As part of future work, we
also intend to improve VISER to resolve some of the limi-
tations highlighted by this paper’s experiments. For instance,
since VISER confirms a responsive layout failure even if it
only involves a few pixels, we plan to develop heuristics
for highlighting those differences most noticeable to humans.
Next, we plan to improve our prototype so that it appropriately
pauses before taking time-dependent screenshots of an AOC.
Finally, we will enhance VISER so that it better handles HTML
elements that are “hidden” during the image analysis process.
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