
Simulating Student Mistakes to Evaluate the
Fairness of Automated Grading

Benjamin Clegg∗, Siobhán North†, Phil McMinn‡

Department of Computer Science
University of Sheffield

Sheffield, United Kingdom
Email: ∗bsclegg1, †s.north, ‡p.mcminn@sheffield.ac.uk

Gordon Fraser
Faculty of Computer Science and Mathematics

University of Passau
Passau, Germany

Email: gordon.fraser@uni-passau.de

Abstract—The use of autograding to assess programming
students may lead to unfairness if an autograder is incorrectly
configured. Mutation analysis offers a potential solution to this
problem. By simulating student coding mistakes, an automated
technique can evaluate the fairness and completeness of an
autograding configuration. In this paper, we introduce a set
of mutation operators to be used in such a technique, derived
from a mistake classification of real student solutions for two
introductory programming tasks.

Index Terms—automated grading; mutation analysis; pro-
gramming mistakes;

I. INTRODUCTION

Recent years have seen an unprecedented growth in the
enrollment of students in higher education Computer Science
degree programs [1]. This surge of students has placed sig-
nificant pressure on institutions and educators, particularly for
the assessment of learning outcomes. Educators often turn to
automated grading and feedback systems in order to reduce the
time and resources required to perform such assessments [2].

Educators deploying autograders must configure them for
each assessment, such as through the definition of test suites
and static analysis tools. If a grading configuration tests for
knowledge outside a task’s learning objectives, students may
be unfairly graded for a lack of knowledge that they have
not yet been provided with. Moreover, a student will get an
unfair grade if they make a minor mistake that is detected
by disproportionately many similar tests. Also, inaccurate
grading unfairly impacts students that are correct, failing to
reinforce desirable practices. Furthermore, incomplete grading
configurations prevent students’ mistakes from being identi-
fied, reinforcing negative behavior, rather than correcting it.
These problems are likely to occur in existing autograded
programming tasks, since educators may have limited or
even incorrect knowledge of mistakes that students make [3].
The complexity of configuring an autograder may exacerbate
these issues. For example, when using multiple grading tools,
educators must define weights for each [4].

We contend that mutation analysis can be employed to
inform educators of potential inaccuracy, incompleteness, and
unfairness of an autograding configuration. Mutation analysis
involves making changes to a correct program based on
a set of mutation operators, which have proven to be an

effective means of simulating real faults in software [5]–[7].
Existing mutation operators do not entirely encapsulate the
coding mistakes that students make, so new operators must be
introduced. By identifying the types of mistakes that students
make when writing software, we are able to define a set
of mutation operators that simulate them. These simulated
mistakes can be executed by a grader. Their detection reveals
which mistake types an autograder misses, and those that
may be unfairly punished. In conventional mutation analysis,
functionality is the only focus. In education, we transform
students into competent software engineers, so the style and
quality of code must be considered, and such mistakes should
also be simulated.

In this paper, we present two key contributions:
• A classification of student mistakes derived from an

analysis of 126 solutions submitted by students for two
introductory programming tasks, presented in Section II.

• 18 identified mutation operators that simulate each of
these mistake classes, presented in Section III.

These mutation operators are required to realize a technique
to evaluate autograding configurations and inform tutors of
potential improvements, which we propose in Section IV.
This technique would also weight individual components
of a grading configuration (e.g., unit tests), using a metric
that balances the impact of individual mistake classes. This
improves fairness, as different types of mistakes will not
disproportionately affect grades.

II. INITIAL INVESTIGATION

In order to derive appropriate mutation operators, we con-
ducted a qualitative analysis targeting mistakes present in
programs written by students for an introductory programming
course. We identified not only faults that impact functionality,
but also violations of style and code quality guidelines, to fully
capture the coding mistakes made by students.

A. Dataset

In this study we use real solutions written by 63 students
for two separate tasks in an introductory Java programming
module. Both assignments require the students to use a course-
specific library for handling input and output. Students were
graded on functionality, style, and code quality.



TABLE I
OBSERVED STUDENT CODE MISTAKES

Observed Mistake Class Description Frequency
Task 1 Task 2 Total

Count % Count % Count %

Literal Value Repetition Non-zero literal values repeated where constants can be defined. 55 87.3 45 71.4 100 79.4
Statement Repetition A statement is repeated unnecessarily. 44 69.8 34 54.0 78 61.9
Poor Indentation Misaligned indentation, or no indent after a brace. 20 31.7 31 49.2 51 40.5
Constants Defined as Variables Constants are defined without the use of final. 9 14.3 31 49.2 40 31.7
Overly Long Lines Any line of code exceeds 100 columns in width (c.f. [8]). 22 34.9 17 27.0 39 31.0
Incorrect Identifier Style Not as variableName, CONSTANT_NAME, ClassName. 15 23.8 20 31.7 35 27.8
Incorrect Calculation Implemented calculation yields an incorrect result. 21 33.3 13 20.6 34 27.0
Poor Identifier Names Uninformative or confusing names are used for identifiers. 5 7.9 13 20.6 18 14.3
Incorrect Values Incorrect values used as literals or in definitions. 4 6.3 7 11.1 11 8.7
Incorrect Classname Class definition and/or filename does not match specification. 3 4.8 4 6.3 7 5.6
Exceeds Range Index can exceed range of an array, list, or file. 3 4.8 4 6.3 7 5.6
Incorrect Input Validation Enforces validation that rejects valid user inputs. 3 4.8 N/A N/A 3 4.8
Misspellings in Strings String literals and definitions contain misspellings. 6 9.5 0 0.0 6 4.8
Lack of Comments Informative comments not included to explain some procedures. 3 4.8 2 3.2 5 4.0
Incomplete Implementation Some requirements of the task are not implemented. 2 3.2 3 4.8 5 4.0
Incorrect Filename Attempts to read file with incorrect name. 1 1.6 2 3.2 3 2.4
Missing Syntax Elements Syntax elements (braces, string concatenations, etc.) are missing. 2 3.2 0 0.0 2 1.6
Logic Flow Error Statements used in incorrect parts of an if-else statement. 2 3.2 0 0.0 2 1.6

Task 1 (T1) required the students to perform calculations
on user input, process the contents of a text file, and print
the results to the terminal in a column-based format. This
task assesses a student’s ability to implement simple input and
output, along with developing a simple algorithm to perform
a calculation. Task 2 (T2) had students render a 2D image
consisting of various elements. Some elements were specified
to be statically defined. Another was to be read from a file
containing unicode characters representing pixel values, and
rendered alongside a mirrored copy. Additionally, pixels were
to be randomly set in part of the image. The task evaluates a
student’s usage of datatypes, loops, arrays and library calls.
Students were required to submit executable main classes
named Assignment1.java and Assignment2.java
respectively, in order to simplify the marking process.

We also had access to the test data and model solutions
written by the course’s leader. For T1 we augmented this
with manually defined inputs for specific edge cases, alongside
randomly generated inputs within the task’s domain.

B. Methodology

In order to identify mistakes that cause failures for both
tasks, our script compiled and executed each student and
model solution with the appropriate set of test data. Some
solutions would not compile, or would encounter a runtime
exception. In these cases, we noted the cause of the error,
added a repaired variant to the solution set, and restarted the
script. Our script stored the output of every execution, and
compared it to the output of the corresponding model solution.
We recorded notable differences between these outputs which
suggested that a solution was not correct. In these cases, the
solution contains a mistake that causes a failure.

We performed a manual analysis on each solution’s source
to locate mistakes which either cause the observed issues, or
directly violate Java programming guidelines. When a new
type of mistake was located, we checked previously analyzed

solutions for it, in order to ensure that no instance of a given
mistake class was missed. For each instance of a mistake,
we recorded observations of the nature of its manifestation.
These observations were used to inform our construction of a
mutation operator to simulate the mistake.

C. Discussion

Table I shows the mistake classes that we observed in our
dataset. The clearest observation that can be made from our
classification is that there is a broad frequency range for the
identified mistake classes. Our results show that there are
considerably more code quality and style issues in submitted
student solutions than faults that directly impact functionality.
This supports the findings of Keuning et al. that quality issues
tend to go unrepaired [9], indicating that these style and quality
mistakes should be considered in autograding.

Our analysis differs from previous work on identifying stu-
dent code mistakes via static analysis and compiler results [3],
[9], since we consider each student’s program individually,
with knowledge of a correct solution’s behavior and qualities.
The dataset used in the previous work contains incomplete
programs with mistakes that students may eventually fix. Con-
versely, our dataset consists of only final student submissions,
revealing only mistakes that students have missed.

Our data shows that each mistake class tends to have a
significantly different frequency for each task. It is likely
that these frequencies are affected by both the nature of the
task itself and the experience of the students, which they
gain through feedback. The frequency of different mistakes
in a task’s solutions may inform a tutor when giving general
feedback to students, and when developing other programming
tasks to evaluate students for improvement in these areas.

Some mistake classes may require additional consideration
when using an autograder. Solutions we observed that had
“Missing Syntax Elements” (Table I) were not compilable,
which should be reported during the grading process. However,



TABLE II
PROPOSED MUTATION OPERATORS FOR EACH MISTAKE CLASS

Citations indicate existing similar or equivalent mutation operators already proposed in the literature.

Mistake Class Mutation Operator Example Mutant

Pre-Mutation (Correct) Post-Mutation (Simulated Fault)

Functional

Incorrect
Calculation

Replace arithmetic operators, or add
new operators and values [5].

n = 1 + 2; n = 1 - 2;

Incorrect
Values

Replace a literal value with another
value of the same type [5].

double pi = 3.1416; double pi = 4.7412;

Exceeds Range Modify the index when reading an
array/list [5], or change the limit of
a for loop that references an array.

int[] array = new int[11];
int n = array[10];

int[] array = new int[11];
int n = array[11];

Incorrect Input
Validation

Add an if statement that calls
System.exit() if a random vari-
able satisfies a random condition.

int x = 100; int x = 100;
if (x > 8) {

System.exit(0);
}

Misspellings in
Strings

Add, remove, replace, or transpose
characters in strings (either literals or
variables).

String s = "hello world"; String s = "hello wolrd";

Incomplete
Implementation

Remove (or comment out) an output
statement [5].

System.out.print("Correct");
System.out.println("Output");

//System.out.print("Correct");
System.out.println("Output");

Incorrect
Filename

Add, remove, replace, or transpose
characters in the argument of a file
reading method call.

FileReader f = new FileReader(
"filename.txt");

FileReader f = new FileReader(
"File.txt");

Incorrect
Classname

Add, remove, replace, or transpose
characters in a class’s declaration
and/or filename.

public class ClassName { ... } public class classname { ... }

Missing Syntax
Elements

Remove a syntax element (string
concatenations, braces, operators,
comparators, parentheses, etc.)

s = "concatenated" + n +
"string";

s = "concatenated" + n
"string";

Logic Flow
Error

Move lines out of or into if/else
blocks.

if (cond) {
n = 2;

}

if (cond) {
}
n = 2;

Quality

Literal Value
Repetition

Replace constant references with its
value as a literal.

final int WIDTH = 10;
padString(forename, WIDTH);
padString(surname, WIDTH);

padString(forename, 10);
padString(surname, 10);

Statement
Repetition

Replace a method call with its con-
tents, expand a loop, or move a state-
ment to each branch of a conditional.

for (int i = 0; i < 3; i++) {
methodCall();

}

methodCall();
methodCall();
methodCall();

Constants
Defined
as Variables

Remove the final keyword from a
constant definition.

final int CONSTANT = 8; int CONSTANT = 8;

Poor Identifier
Names

Replace an identifier’s name with an
uninformative word.

int length = 4; int value = 4;

Lack of
Comments

Remove a comment line, multi-line
comment, javadoc comment, or a
comment at the end of a line.

// Description of procedure
...

...

Style

Poor
Indentation

Add or remove a random number of
indents before a line. Replace some
tabs with spaces, or vice-versa.

if (cond) {
methodCall();

}

if (cond) {
methodCall();
}

Overly
Long Lines

Remove new-lines from a multi-line
statement, or move a line to the end
of the line preceding it.

s = "long" +
... +
"string";

s = "long" + ... + "string";

Incorrect
Identifier Style

Change an identifier’s capitalization,
and/or remove or add underscores
between words.

int columnHeight = 24; int Column_Height = 24;



Fig. 1. Proposed evaluation approach overview

tests used to grade other functionality would also fail, such as
those covering “Incorrect Calculation”, resulting in an unfair
grade if the missing syntax was the only actual mistake.

We observed that some mistakes contributed to the preva-
lence of others. For example, some cases where an array’s
index “Exceeds its Range” were caused by an “Incorrect Cal-
culation”. Another solution had “Poor Indentation” in a nested
if-else, likely causing the student to make a “Logic Flow
Error”. This case illustrates the importance of encouraging
adherence to style guidelines.

III. MUTATION OPERATORS

Table II shows the mutation operators that we defined using
our observations and mistake classes. Each operator is listed
with a description of the mutation process, and an example of
the operator’s effect on correct code. Some of these operators,
such as introducing “Incorrect Calculation” (Table II), can
be implemented using existing mutation operators [5]. This
does not apply to the majority of our operators. Some of
our operators uniquely impact functionality, such as that for
“Missing Syntax Elements”, which will cause a compiler error.
This is not present in conventional operators, since detecting
compiler errors is not necessary when evaluating a test suite,
yet it should be considered when evaluating the fairness of
autograding. Our other operators introduce poor style and code
quality, which are not present in existing mutation operators
that only focus on functionality.

IV. PROPOSED TECHNIQUE

Figure 1 shows an overview of our proposed technique to
apply these mutation operators in the evaluation of autograding
configurations. A “Mutation Tool” (Figure 1) would apply our
mutation operators to a task’s tutor defined model solution,
creating a set of “Mutants” for each simulated mistake class.
The task’s grader is executed on each of these mutants. This

grader can be modeled as a set of individual “Grading Com-
ponents”, comprising of tests and static analysis processes.
Every component that reports an error (e.g., a failing test) for
a mutant is marked as “killing” the mutant [10].

An “Evaluator” (Figure 1) will provide the tutor with a
“Report” based on the results of executing grading compo-
nents with mutants. First, the evaluator lists mutants that are
not killed by any components. This provides the tutor with
knowledge of mistake classes that are potentially not covered
by the grading configuration, allowing for such an issue to be
resolved. Mutants of mistake classes that are not required for
the task’s learning objectives can be safely ignored.

Our evaluator would also provide a “Suggested Weight” for
each grading component, so that each component appropriately
influences the grade that a student receives. Conventional
mutation analysis uses a mutation score of the percentage of
mutants that are killed [7]. However, if several components
each cover multiple mistake classes, an individual mistake
class cannot be assessed. This leads to unfairness if every
component is weighted equally or by a simple mutation score,
since a student that makes one of these mistakes would be
punished by all of these components failing. Instead, we will
define a metric that favors grading components which only
detect mutants of the same mistake class, rather than broad
components that detect many. The weight of a component
would be determined by the classes of mutants that it kills, the
number of mutants in these classes that are killed, and how
many other components kill the same mutants. This approach
improves the fairness of the grading configuration, since it
accounts for the differences between grading components.

The educator should also be able to flag some mistake
classes as out of scope for a task, indicating knowledge that
students have not yet been taught in the course. These flagged
mutants can be considered in the weighting metric to reduce
the impact on a student’s grade when making a mistake of the
same class.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have identified various student mistake
classes through the observation of real student assignment
solutions. We defined mutation operators that simulate each
of these mistake classes. We also proposed a technique that
applies mutation to improve the fairness, accuracy and com-
pleteness of autograding in beginner programming courses.

Our future work will be focused on developing this tech-
nique, including the implementation of our mutation operators
and the evaluator itself. We plan to evaluate our technique by
generating weights for each task in our dataset, and comparing
the grades produced with and without these weights against
the manually derived real grades of the dataset. We will also
add operators for other mistake classes that are identified in
existing work [3], [9], alongside any classes that we identify
in future studies.

ACKNOWLEDGMENT

Phil McMinn is supported in part by the Institute of Coding,
funded by the Office for Students (OfS), England.



REFERENCES

[1] National Academies of Sciences, Engineering, and Medicine, Assessing
and Responding to the Growth of Computer Science Undergraduate
Enrollments. The National Academies Press, 2017.

[2] C. Douce, D. Livingstone, and J. Orwell, “Automatic test-based assess-
ment of programming: A review,” J. Educ. Resour. Comput., 2005.

[3] N. C. C. Brown and A. Altadmri, “Novice Java programming mistakes:
Large-scale data vs. educator beliefs,” Trans. Comput. Educ., 2017.

[4] J. Breitner, M. Hecker, and G. Snelting, “Der grader Praktomat,”
Automatisierte Bewertung in der Programmierausbildung, 2017.

[5] R. A. DeMillo, D. S. Guindi, W. McCracken, A. J. Offutt, and K. King,
“An extended overview of the Mothra software testing environment,” in
Workshop on Software Testing, Verification, and Analysis, IEEE, 1988.

[6] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate
tool for testing experiments?,” in ICSE ’05, pp. 402–411, ACM, 2005.

[7] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?,” in
FSE 2014, pp. 654–665, ACM, 2014.

[8] Google, “Google Java style guide.” https://google.github.io/styleguide/
javaguide.html#s4.4-column-limit. [Online; accessed 27-Sept-2018].

[9] H. Keuning, B. Heeren, and J. Jeuring, “Code quality issues in student
programs,” in ITiCSE ’17, pp. 110–115, ACM, 2017.

[10] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
pp. 649–678, Sept 2011.


