
The Influence of Test Suite Properties on
Automated Grading of Programming Exercises

Benjamin S. Clegg
University of Sheffield

Phil McMinn
University of Sheffield

Gordon Fraser
University of Passau

Abstract—Automated grading allows for the scalable assess-
ment of large programming courses, often using test cases to
determine the correctness of students’ programs. However, test
suites can vary in multiple ways, such as quality, size, and
coverage. In this paper, we investigate how much test suites
with varying properties can impact generated grades, and how
these properties cause this impact. We conduct a study on
artificial faulty programs that simulate students’ programming
mistakes and test suites generated from manually written tests.
We find that these test suites generate greatly varying grades,
with the standard deviation of grades for each fault typically
representing ∼84% of the grades not apportioned to the fault.
We show that different properties of test suites can influence the
grades that they produce, with coverage typically making the
greatest effect, and mutation score and the potentially redundant
repeated coverage of lines also having a significant impact. We
offer suggestions based on our findings to assist tutors with
building grading test suites that assess students’ code in a fair
and consistent manner. These suggestions include ensuring that
test suites have 100% coverage, avoiding unnecessarily recovering
lines, and checking test suites using real or artificial faults.

I. INTRODUCTION

Automated grading sees widespread use in software engi-
neering education, both in traditional courses and massive
open online courses (MOOCs), as it allows tutors to assess
programs written by growing numbers of students without
demanding more time, as would be the case for manual
assessment [1]–[3]. This is especially important in large courses,
where assessment would be otherwise impossible. Automated
grading also benefits students, by providing them with near
instantaneous feedback for formative assessment tasks, even
when outside of the conventional teaching context. A common
approach to grade programs automatically is to run automated
test suites to check the correctness of students’ code, and then
to calculate a grade based on the fraction of tests that passed [3].
However, such grades may be inaccurate with respect to a task’s
learning objectives, as test suites constructed by tutors may be
deficient in detecting students’ errors [4].

Consider the example program in Figure 1a, which is
supposed to calculate the absolute value of its input, but
erroneously returns a wrong value for negative inputs. If the
grade is calculated as the percentage of the tests passing in the
JUnit test suite shown in Figure 1b, the resulting grade will
be 100% because the erroneous code is not covered at all. In
contrast, the test suite in Figure 1c will result in a grade of 0%
since only the erroneous code is covered. A more complete
assessment would result from Figure 1d, where one test covers

int abs(int x) {
if(x > 0) {
return x;
} else {
return x; // Incorrect: should be -x
}
}

(a) Example program containing a mistake.

@Test void test1() {
assertEquals(42, abs(42));
}

(b) Resulting grade: 100%.

@Test void test1() {
assertEquals(42, abs(-42));

}
(c) Resulting grade: 0%.

@Test void test1() {
assertEquals(42, abs(42));
}
@Test void test2() {
assertEquals(42, abs(-42));
}

(d) Resulting grade: 50%.

@Test void test1() {
assertEquals(42, abs(42));

}
@Test void test2() {
assertEquals(42, abs(-42));

}
@Test void test3() {
assertEquals(0, abs(0));

}
(e) Resulting grade: 66.7%.

@Test void test1() {
assertEquals(42, abs(42));
}
@Test void test2() {
assertEquals(42, abs(-42));
}
@Test void test3() {
assertEquals(10, abs(-10));
}

(f) Resulting grade: 33.3%.

@Test void test1() {
abs(42);

}
@Test void test2() {
abs(-42);

}
@Test void test3() {
abs(0);

}
(g) Resulting grade: 100%.

Fig. 1: Example of the grading behaviour of different JUnit
test suites on a single faulty method.

the correct branch of the if-condition, and one test covers the
erroneous case, resulting in a grade of 50%, suggesting that
coverage is a prerequisite for a fair grading test suite.

However, even when all code is covered, grades may vary
based on additional tests: Consider Figure 1e and Figure 1f;
both achieve 100% code coverage, but nevertheless the resulting
grades vary substantially, with one test suite resulting in a grade
of 66.7% while the other results in only 33.3%, due to their tests
covering some statements more than others. Finally, consider
Figure 1g: Although the test suite contains three tests and
achieves 100% code coverage, the tests are of low quality and
omit the important assertions, thus resulting in an overall grade
of 100% as they cannot detect any erroneous implementations.
Such quality issues in grading test suites may result in cases
where a student’s solution is less influential on their grade than
the nature of the test suite itself.

In order to understand how test suites influence the resulting

grades, and thus how they can impact fairness and consistency
of grades and the quality of feedback, we empirically study
the effects of grading test suites on grades. First, we aim to
understand whether the effect of grade variation illustrated by
the example in Figure 1 can occur in practice:

RQ1: How much do grades vary with different test suites?

Our experiment on a set of Java classes using large numbers
of sampled test suites suggest that grades for individual errors
can vary significantly, with a standard deviation proportional
to ∼84% of the mean grades lost for each fault. Considering
this result, we aim to better understand what properties of test
suites are influential for the variation in grades:

RQ2: Which properties of test suites impact grades?

Besides the obvious factors of coverage and general test
quality (measured using the mutation score), we note that
the redundancy of coverage is a further influential factor in
grades calculated with automated tests.

We use these findings to suggest strategies that tutors can
use to ensure consistency in their grading test suites.

II. RESEARCH METHODOLOGY

A. Experiment Procedure

To answer the research questions, we require (1) program-
ming assignments; (2) multiple erroneous implementations of
these assignments; and (3) test suites with different properties
to study their influence on the resulting grade. To analyse
these properties in a statistically meaningful way, we used a
simulated scenario, where we use real Java classes, but artificial
faulty versions (mutants, Section II-C), and sample test suites
from a larger pool of JUnit tests (Section II-D), in order to
gather a large number of datapoints.

Given the test suites and mutants, we assume a simple
grading scenario: The grade for a solution is determined by
executing all tests, and calculating the percentage of executed
tests that passed [3]. We execute each test on every mutant
for each subject, as well as the subject class itself, and store
the results. We use JaCoCo [5] to gather coverage information
for every test execution, allowing us to store which lines are
covered and uncovered by each test for every mutant.

a) RQ1: In order to measure the influence of different
test suites on grades, we investigate the range of grades. Given
a large sample of test suites, it is inevitable that there will be
the odd test suite consisting of only failing tests (resulting in
a grade of 0%) or of only passing tests (resulting in a grade
of 100%) for each mutant. Consequently, we would expect the
overall range to be 100% for most mutants. Therefore, instead
of the range we look at the standard deviation per mutant.

b) RQ2: In order to measure the influence of different
test suite properties on the resulting grade, we perform linear
regression on every run of each subject class. Prior to running
the linear regression, we normalise the grade and observed
properties to allow for the comparison of β coefficients.

By collecting the results of tests that are present in each
test suite for each mutant, we are able to construct test suite

TABLE I: Subject classes from the Code Defenders dataset [6].

Subject LoC Mutants Tests Source Project

ByteVector 154 462 746 Objectweb ASM
CharRange 87 247 896 Commons Lang
Complex 103 294 373 Math4J
IntHashMap 148 343 861 Commons Lang
Lift 53 73 412 (Custom)
Option 260 829 806 Commons CLI
Rational 114 249 675 Dittrich Java Intro
SparseIntArray 161 616 651 Android
XmlElement 221 288 671 Inspirento

results for every mutant, including the number of passing /
failing tests, plus line coverage data. These observations allow
us to derive several properties for every pair of mutants and
test suites. We compute the generated grade as:

Grade =
n(P)

n(T)
,

where P = passing tests in the suite, and
T = all tests in the suite.

We use test adequacy metrics of line coverage and mutation
score to capture the quality of test suites:

Coverage =
n(C)

n(L)
,

where C = lines covered by the suite, and
L = total lines.

Mutation Score =
n(D)

n(M)
,

where D = other mutants detected by the suite, and
M = other mutants.

Additionally, in order to examine the effect of multiple tests
covering the same lines, we define a recoverage metric that
captures the average number of times each line is recovered:

Recoverage =

∑
l∈C(f(l)− 1)

n(T) · n(L)
,

where f(l) = Number of tests in the suite that cover l

It is possible for other test suite metrics to be considered
in future work, such as the number of assertions and lines of
code in each test suite.

B. Subject Programs

As a source of example programs and tests, we used nine
Java classes contained in a dataset originating from experiments
with Code Defenders [7], an educational testing game (Table I).
Code Defenders is a mutation testing game where users compete
to write faulty mutant variants of a particular program and unit
tests to detect these mutants, and has been shown to support
the crowdsourcing of mutation testing by Rojas et al. [7], as
well as the teaching of software testing techniques by Fraser
et al [6]. The subject classes are taken from real open-source
Java projects, with the exception of Lift, which was written
as a simple introduction to Code Defenders [6]. Importantly

TABLE II: Functional mutation operators that we use in this
experiment.

Operator Description

Logic Flow Error Move contents of a conditional statement’s
block to outside the block [8].

Incomplete
Implementation

Remove all statements in the same scope after
a particular point.

String
Misspelling

Change or transpose characters in a string [8].

Statement
Deletion

Delete a statement [8], [9].

Incorrect Values Replace a numeric or boolean value with
another value of its type (e.g. 1 to −1), or
replace a string with an empty string [8], [9].

Incorrect
Calculation

Replace an arithmetic operator (+, -, *,
etc.) [8], [9].

Logical Op.
Replacement

Replace a logical operator (|, &, etc.) [9].

Conditional Op.
Replacement

Replace a conditional operator (||, &&,
etc.) [9].

Relational Op.
Replacement

Replace a relational operator (==, <, etc.) [9].

Shift Operator
Replacement

Replace a shift operator (<<, >>, etc.) [9].

for our setting, each of the Java classes comes with a large
number of student-written test cases, which we use as a source
for grading test suites.

The original dataset includes three additional subject classes,
which we excluded from the experiment for one of two reasons.
We did not use CaseInsensitiveString as some of
its AST nodes are incorrectly represented by the JavaParser
library, preventing our mutation tool from generating mutants
that require the manipulation of a subject’s AST.1 We also
excluded Document and Options (distinct to Option),
due to incompatibilities with our execution tool.

Each subject class in the dataset includes a set of human-
written tests from a series of human studies and classroom
trials used in the evaluation of Code Defenders. Some of these
tests fail when executed on the original subject class. These
tests are invalid, so we removed them from the dataset prior
to running the experiment.

C. Grading Candidate Implementations

For this experiment, we use mutation analysis techniques
to generate a set of faulty variants for each subject class.
In mutation analysis, artificial defects are generated by sys-
tematically applying operators that represent different classes
of faults. Each resulting mutant differs from the original
program by exactly one change. Table II shows the mutation
operators that we implemented and used for this experiment.
Figure 3 shows some of the faults generated by these operators.
Since we aim to investigate how test suites affect automated
grading, we implemented some of the mutation operators that

1We used JavaParser 3.7.0 in our mutation tool, https://mvnrepository.com/
artifact/com.github.javaparser/javaparser-core/3.7.0

we proposed in our previous work as a means to simulate
novice programming mistakes [8]. We only used operators
which affected the functionality of a class without preventing
compilation, since uncompilable mutants would fail on all tests,
only generating grades of 0%, which would skew our results.
As such, we disabled the Incorrect Classname and Missing
Syntax Elements operators. When implementing our mutation
tool, we found that some of our mutation operators subsumed
others, for example, Misspellings in Strings often results in
Incorrect Filenames, and Incorrect Values can result in Exceeds
Range. We only implemented the subsuming operators. We
redefined our Incomplete Implementation operator as removing
both a statement and all statements that follow it, to better
simulate partially completed solutions. We have retained the
original functionality of Incomplete Implementation, denoted
by Statement Deletion, as implemented by Major [9], [10].

Some of our other mutation operators are equivalent to
those already implemented by other tools, for example, several
operator replacement mutation operators are implemented in
Major. In these cases our mutation tool executes Major with the
appropriate parameters. For the remaining mutation operators,
we used one of two approaches in our tool. For operators that
involve simple replacements, such as String Misspelling, we
locate a line where a change can be made, then apply a string
modification to the line. Other operators are more complex,
such as Logic Flow Error and Incomplete Implementation,
since they require knowledge of the context in which they can
be applied. We implemented these operators by manipulating
Java’s Abstract Syntax Tree (AST) using JavaParser [11]. For
example, to apply the Incomplete Implementation operator to a
given node (such as a statement), our mutation tool removes the
node’s succeeding sibling nodes. With the exception of these
AST based mutation operators, each operator only modifies a
single line of the original program.

Some of the mutation operators can result in non-compilable
mutants. For example, our implementation of the Incomplete Im-
plementation operator can remove a method’s return statement,
where the method’s declaration requires a value to be returned.
Therefore, we ran the Java compiler on every generated mutant,
then deleted mutants which failed to compile.

Prior to running our data analysis on each subject, we identify
mutants that are potentially equivalent to the original subject
class by checking if no tests in the entire set fail on them.
We remove all observed executions for these mutants. While
these mutants may not be truly equivalent, they will always
have a generated grade of 100%, and as such different test
suites would not generate varying grades for them. For the
same reason, we also remove mutants which cause every test
to fail, and therefore only receive grades of 0%.

D. Grading Test Suites

For 30 repetitions of each subject, we constructed a set of
test suites by randomly sampling tests from the entire group
of human written tests available for it. If a suite is generated
that already exists for a run of the experiment, it is discarded
and another is generated in its place.

To ensure variation in coverage, recoverage, and mutation
score, we generated test suites with 10, 20, 40, 60, 80, and 100
tests. This is necessary to control for the possible relationship
between suite size and both mutation score and coverage [12].
For the same reason we do not include size as a factor of the
linear regression; suite size would likely have a strong degree
of covariance with the other factors, which would introduce
a significant challenge in identifying the relative impact of
individual test suite properties. We generated 1000 suites per
repetition of the experiment for each subject, split across each
of the six sizes, rounded up (167 suites per size).

E. Threats to Validity

The mutants that we generated only introduce one change
each. As such, they will not entirely reflect students’ solutions
which may contain multiple mistakes. It is possible that for
real students’ solutions and real grading test suites, the changes
to grades may be even greater than what we observe. As such,
repeating this experiment with higher-order mutants or real
student solutions may provide an even greater insight into how
different test suite properties affect grades.

The tests that we use from the Code Defenders dataset may
not reflect those written by a tutor. However, they are still tests
that are capable of detecting faults in software, and can be
used to construct different test suites with varying properties.

The number of mutants generated by each operator varies.
As such, our analysis may be skewed by the instances of
more common mutation operator classes, which will generally
represent smaller faults. However, where a fault appears in a
program is what truly impacts its severity. For example, if a
small arithmetic change causes a program to attempt to read
outside of an array’s range in a class’ constructor, more tests
may fail than if the contents of several methods were removed.

While there is evidence that artificial faults are a suitable
substitute for real faults in determining test suite effective-
ness [13], it is possible that this may not hold for students’
faults, presenting a construct threat. In future work, we will
conduct a study using real student faults to verify that mutants
are an effective substitute for them.

It is possible that the mutation operators could generate
multiple mutants that are functionally identical to one another.
This may skew the data towards these duplicated mutants.
There are no automated approaches that reliably identify such
duplicates, and it is infeasible to manually check for duplication
across so many mutants.

III. RESULTS

A. RQ1: To what extent do different test suites generate varying
grades?

Figure 2a shows the distribution of grades generated by
each suite for every mutant across all 30 repetitions. Figure 2b
shows the standard deviation of grades generated by all test
suites across the 30 repetitions on a per mutant basis. We find
that there is a spread of grades generated for each mutant,
despite mutants typically only being a few percentage points

TABLE III: Summary of variance inflation factors (VIFs) for
each property across all linear models.

Coverage Recoverage Mutation Score

Median 1.60 1.43 1.09
Std. Dev. 0.53 0.48 0.40
Max. 4.09 3.07 3.81

short of perfect grade due to their often minute changes to the
correct program.

The distributions of generated grades and mutants’ standard
deviations vary between our observed subject classes. This
suggests that the nature of a class itself affects how potential
test suites perform on faulty variants. We also note that there
is a range of standard deviations across the set of mutants,
indicating that some mutants are more prone to a change in
grade due to the selected test suite than others. This may be
due to how detectable a mutant is with respect to the whole
set of available tests. If a mutant is detected by fewer tests
it is less likely that a detecting test will be used in a test
suite, so the mutant will be more likely to receive a high
grade. Additionally, a rare, detecting test would more often
be outnumbered by non-detecting tests, so even if it is used,
it would have a limited impact on the grade. This especially
appears to be the case for Option, which when compared to
the other subject classes has a very high median grade and
low median standard deviation of grades for each mutant.

Across all runs and all subjects, the mean grade is ∼96.5%,
and the mean standard deviation per mutant is ∼2.94%. As each
mutant “loses” ∼3.5% of the maximum grade, this standard
deviation accounts for a very significant amount of the possible
range of grades; the standard deviation represents ∼84% of
the lost grades. This indicates a very strong impact on the
inconsistency of grading for single mistakes across different
possible test suites. Different test suites are likely to generate
varying grades for the same fault. This effect is more prevalent
for smaller test suites; for Lift, suites with 10 tests typically
have a standard deviation of ∼9.5% grades for single mutants,
while suites with 100 tests have a standard deviation of ∼2.6%.

RQ1 Results: Grades can vary greatly across different test
suites, with a standard deviation that represents ∼84% of the
grades lost on average for each individual mutant.

B. RQ2: Which properties of test suites impact grades?

We performed multivariate linear regression on each of the 30
runs for every subject and test suite size, in order to determine
if the coverage, recoverage, and mutation score of test suites
have an impact on generated grades. Table IV shows the mean
results of the linear regressions across all 30 runs. We find
that all of the overall linear models are statistically significant,
with p-values of <0.001. However, models generated for some
subjects have a very low adjusted R2 (R2

adj), most notably
CharRange, Complex, and Option, suggesting that the
model fails to explain most of the variability in generated
grades across our observations. In these cases, differences in
grades are more likely to be due to the mutants themselves

ByteVector CharRange Complex IntHashMap Lift Option Rational SparseIntArray XmlElement

 1
0

 2
0

 4
0

 6
0

 8
0

1
0
0

 1
0

 2
0

 4
0

 6
0

 8
0

1
0
0

 1
0

 2
0

 4
0

 6
0

 8
0

1
0
0

 1
0

 2
0

 4
0

 6
0

 8
0

1
0
0

 1
0

 2
0

 4
0

 6
0

 8
0

1
0
0

 1
0

 2
0

 4
0

 6
0

 8
0

1
0
0

 1
0

 2
0

 4
0

 6
0

 8
0

1
0
0

 1
0

 2
0

 4
0

 6
0

 8
0

1
0
0

 1
0

 2
0

 4
0

 6
0

 8
0

1
0
0

50

60

70

80

90

100

Suite Size

A
ll

G
e

n
e

ra
te

d
 G

ra
d

e
s

(a) All generated grades across all 30 repetitions. For ease of presentation, we removed the outliers.
ByteVector CharRange Complex IntHashMap Lift Option Rational SparseIntArray XmlElement

 1
0

 2
0

 4
0

 6
0

 8
0

1
0
0

 1
0

 2
0

 4
0

 6
0

 8
0

1
0
0

 1
0

 2
0

 4
0

 6
0

 8
0

1
0
0

 1
0

 2
0

 4
0

 6
0

 8
0

1
0
0

 1
0

 2
0

 4
0

 6
0

 8
0

1
0
0

 1
0

 2
0

 4
0

 6
0

 8
0

1
0
0

 1
0

 2
0

 4
0

 6
0

 8
0

1
0
0

 1
0

 2
0

 4
0

 6
0

 8
0

1
0
0

 1
0

 2
0

 4
0

 6
0

 8
0

1
0
0

0

5

10

15

Suite Size

S
td

.
D

e
v
.

o
f

G
ra

d
e

s
 P

e
r

M
u

ta
n

t

(b) Standard deviation of grades generated by all suites for each mutant across all 30 repetitions.

Fig. 2: Generated grade statistics of mutants for each subject class.

and how they interact with the tests for the subject class.
However, for some of the other subjects our models do explain
a significant variability in grades, especially for IntHashMap
and SparseIntArray, indicating that the observed test suite
properties do have a considerable impact on generated grades
for these subjects. As such, while the magnitude of the effect
varies between subject classes, observable test suite properties
can have an impact on grades generated by test suites.

Table IV also shows the standardised coefficients (β) and
significance values that each property has in our linear models.
Only 5 observed coefficients for the properties have a mean
significance of >0.05. We observe that the remaining property
coefficients typically achieve a high significance, with p<0.01
in most cases. This indicates that each of the properties has a
significant contribution to the linear models, and therefore has
some influence on the generated grades for our mutants.

Across all of our models, the properties have low variance
inflation factors (VIF), as shown in Table III. This indicates that
the properties each have a low degree of multicollinearity, and
that the impact of correlations between the properties on the
variance of their β coefficients is limited [14]. This allows us
to use the β coefficients to determine which factors contribute
the most to a model with a higher degree of reliability, thus
providing an estimate of the relative impact of each property
on generated grades.

On average across the models for each subject, we find that
the β coefficient of Coverage has the greatest magnitude (0.39),
followed by Mutation Score (−0.22) and Recoverage (0.2). As
such, Coverage generally influences grades the most, but the
other properties also have a significant impact.

The β coefficients for some properties change with different
test suite sizes. Across all subjects, as the test suite size
increases, so does the magnitude of the β coefficient for
Recoverage. This could be due to larger test suites being more

likely to recover both more and a greater variety of lines of
code, which would increase the likelihood of some mutants
being detected. Conversely, the magnitude of Mutation Score
decreases as the test suite size increases. This may be a result
of larger test suites being more likely to detect mutants than
smaller test suites. This is illustrated by Figures 2a and 2b,
where the median and upper quartile grades tend to be lower
for larger test suites, whilst the standard deviation of grades
for each mutant is also smaller. In these cases, grades are more
consistently lower with larger test suites since they have a
greater fault detection capability.

There is generally a fluctuation of magnitude for Coverage
as test suite size varies, perhaps due to different suite sizes
achieving different coverage levels. Small test suites may have
lower coverage, and very large suites may rarely have low
coverage. We also observe that Mutation Score usually has
a negative β coefficient, and where it is positive, it is very
close to zero. This suggests that test suites with a greater fault
detection capability will generally generate lower grades.

The overall mean β coefficients are not reflected for some
subjects. For example, Mutation Score tends to have a very low
impact on IntHashMap for larger test suites, and Coverage
has a low impact on Option. We examined individual mutants
for these subjects, and found that grades for individual mutants
did not change with respect to these respective properties. In the
case of IntHashMap, the low impact of mutation score may
be due to different mutants not exhibiting similar behaviour,
perhaps due to low method interdependency, the relatively high
number of conditional statements, and a low average of mutants
per line (∼2.3). For Option we found that the subject uses
classwide variables extensively, so any mutants in the class are
likely to modify its state in an easily observable manner. As
such, for most mutants, larger test suites are likely to contain

TABLE IV: Summary of linear regression models built for each
subject and test suite size, mean values across 30 repetitions,
rounded to 2 decimal places.

Size Model Coverage Recoverage Mutation Score

p R2
adj β p β p β p

ByteVector
10 <0.01 0.27 0.56 <0.01 0.25 <0.01 −0.62 <0.01
20 <0.01 0.39 0.55 <0.01 0.33 <0.01 −0.56 <0.01
40 <0.01 0.5 0.47 <0.01 0.41 <0.01 −0.4 <0.01
60 <0.01 0.54 0.38 <0.01 0.49 <0.01 −0.32 <0.01
80 <0.01 0.57 0.3 <0.01 0.56 <0.01 −0.23 <0.01

100 <0.01 0.6 0.23 <0.01 0.63 <0.01 −0.21 <0.01

CharRange
10 <0.01 0.04 0.05 <0.01 −0.09 <0.01 −0.18 <0.01
20 <0.01 0.03 0.09 <0.01 −0.13 <0.01 −0.15 <0.01
40 <0.01 0.05 0.16 <0.01 −0.17 <0.01 −0.13 <0.01
60 <0.01 0.07 0.21 <0.01 −0.18 <0.01 −0.12 <0.01
80 <0.01 0.09 0.25 <0.01 −0.2 <0.01 −0.1 <0.01

100 <0.01 0.1 0.27 <0.01 −0.22 <0.01 −0.07 <0.01

Complex
10 <0.01 0.06 0.05 <0.01 0.1 <0.01 −0.3 <0.01
20 <0.01 0.04 0.05 <0.01 0.14 <0.01 −0.24 <0.01
40 <0.01 0.05 0.07 <0.01 0.2 <0.01 −0.21 <0.01
60 <0.01 0.07 0.12 <0.01 0.23 <0.01 −0.19 <0.01
80 <0.01 0.1 0.17 <0.01 0.26 <0.01 −0.19 <0.01

100 <0.01 0.14 0.21 <0.01 0.28 <0.01 −0.17 <0.01

IntHashMap
10 <0.01 0.44 0.67 <0.01 0.02 <0.05 −0.26 <0.01
20 <0.01 0.66 0.76 <0.01 0.08 <0.01 −0.1 <0.01
40 <0.01 0.76 0.7 <0.01 0.21 <0.01 −0.02 <0.05
60 <0.01 0.77 0.6 <0.01 0.33 <0.01 0 <0.05
80 <0.01 0.77 0.52 <0.01 0.41 <0.01 0 0.06

100 <0.01 0.78 0.45 <0.01 0.48 <0.01 0 <0.05

Lift
10 <0.01 0.13 0.43 <0.01 0.08 <0.01 −0.41 <0.01
20 <0.01 0.24 0.5 <0.01 0.1 <0.01 −0.32 <0.01
40 <0.01 0.37 0.55 <0.01 0.13 <0.01 −0.17 <0.01
60 <0.01 0.42 0.55 <0.01 0.16 <0.01 −0.08 <0.01
80 <0.01 0.45 0.54 <0.01 0.2 <0.01 −0.05 <0.05

100 <0.01 0.47 0.52 <0.01 0.23 <0.01 −0.02 0.15

Option
10 <0.01 0.1 0.01 0.17 0.11 <0.01 −0.3 <0.01
20 <0.01 0.08 −0.02 0.06 0.18 <0.01 −0.23 <0.01
40 <0.01 0.09 −0.03 <0.05 0.25 <0.01 −0.17 <0.01
60 <0.01 0.11 −0.03 <0.05 0.32 <0.01 −0.14 <0.01
80 <0.01 0.14 −0.02 <0.05 0.36 <0.01 −0.12 <0.01

100 <0.01 0.16 0 <0.05 0.39 <0.01 −0.1 <0.01

Rational
10 <0.01 0.31 0.75 <0.01 0.06 <0.01 −0.67 <0.01
20 <0.01 0.47 0.78 <0.01 0.07 <0.01 −0.51 <0.01
40 <0.01 0.58 0.76 <0.01 0.07 <0.01 −0.27 <0.01
60 <0.01 0.62 0.74 <0.01 0.09 <0.01 −0.15 <0.01
80 <0.01 0.63 0.72 <0.01 0.12 <0.01 −0.09 <0.01

100 <0.01 0.64 0.69 <0.01 0.16 <0.01 −0.05 <0.01

SparseIntArray
10 <0.01 0.41 0.61 <0.01 0.11 <0.01 −0.27 <0.01
20 <0.01 0.52 0.57 <0.01 0.21 <0.01 −0.15 <0.01
40 <0.01 0.66 0.58 <0.01 0.28 <0.01 −0.07 <0.01
60 <0.01 0.72 0.55 <0.01 0.35 <0.01 −0.04 <0.05
80 <0.01 0.74 0.46 <0.01 0.44 <0.01 −0.02 <0.05

100 <0.01 0.75 0.36 <0.01 0.54 <0.01 −0.01 0.07

XmlElement
10 <0.01 0.13 0.5 <0.01 0.09 <0.01 −0.59 <0.01
20 <0.01 0.16 0.47 <0.01 0.16 <0.01 −0.52 <0.01
40 <0.01 0.23 0.43 <0.01 0.25 <0.01 −0.43 <0.01
60 <0.01 0.29 0.41 <0.01 0.31 <0.01 −0.37 <0.01
80 <0.01 0.33 0.37 <0.01 0.36 <0.01 −0.3 <0.01

100 <0.01 0.36 0.35 <0.01 0.39 <0.01 −0.22 <0.01

Mean (All Subjects & Suite Sizes)
<0.01 0.36 0.39 <0.05 0.2 <0.01 −0.22 <0.05

similar proportions of tests that detect the fault, irrespective
of how much of the program they cover. From this, we can
conclude that the impact of test suite properties on grades can
depend on the subject itself, though most subjects do follow a
similar trend.

RQ2 Results: Coverage generally has the most effect on
generated grades (β ≈ 0.39), though Mutation Score (β ≈
−0.22) and Recoverage (β ≈ 0.20) also have a significant
impact.

IV. DISCUSSION

As we observed in Section III, different test suites can
produce varying grades, influenced by various properties of
the test suites themselves. While the effect of test suite
properties on students’ grades cannot be directly controlled,
some measures can be made by tutors when designing or
updating a test suite, in order to improve consistency and
fairness. We discuss such measures in this section. For each
of our suggestions, we assume that a correct model solution
which perfectly reflects a programming task’s specification is
available when developing a grading test suite.

In this section we demonstrate the effects of each property
on grades, using Lift as an example, since its β coefficients
are similar to the means across all subjects for suites with
10 tests. These means are 0.40, 0.08, and −0.4 for Coverage,
Recoverage, and Mutation Score, respectively. We use three
mutants to illustrate the effects of these properties. Figure 3
is the source code of Lift, including the diffs of the three
mutants. Figure 4 shows the relationship between the properties
and grades for each of the three mutants, alongside all of the
mutants for Lift.

We selected the mutants by the relationships between their
grades and the properties measured for the executions of each
test suite:
• Mutant X (Figure 4b, Line 7-8) exhibits similar grade-

property relationships to the overall trend of all Lift mu-
tant executions combined.

• Mutant Y (Figure 4c, Line 21-22) has a positive relation-
ship between grades and each property.

• Mutant Z (Figure 4d, Line 61-62) has a negative relation-
ship between grades and each property.

A. Coverage

Overall Observations
Our results in Section III-B show that the coverage of a
test suite often has a significant impact on generated grades.
Figure 4 shows the grades generated by test suites of varying
coverage levels.

The overall trend for Lift indicates an increase in grades
along with coverage. It is possible that this is due to the mutants
only affecting a subset of the lines of code, and as such, suites
that have higher levels of coverage may have fewer tests that
detect the mutant than suites with lower coverage that only
cover lines affected by the mutant.
Individual Mutants
The overall effect is demonstrated by Mutant X, which modifies
the initial value of numRiders. This mutant only affects three
of the nine public non-constructor methods. If a test suite were
to evenly cover all nine of these methods, two thirds of its
tests would not be capable of detecting the mutant. If a test

1 public class Lift {
2

3 private int topFloor;
4 private int currentFloor = 0;
5 private int capacity = 10;
6 # Mutant X - Incorrect Values
7 - private int numRiders = 0;
8 + private int numRiders = 1;
9

10 public Lift(int highestFloor) {
11 topFloor = highestFloor;
12 }
13

14 public Lift(int highestFloor, int maxRiders) {
15 this(highestFloor);
16 capacity = maxRiders;
17 }
18

19 public int getTopFloor() {
20 # Mutant Y - Incorrect Values
21 - return topFloor;
22 + return 0;
23 }
24

25 public int getCurrentFloor() {
26 return currentFloor;
27 }
28

29 public int getCapacity() {
30 return capacity;
31 }
32

33 public int getNumRiders() {
34 return numRiders;
35 }
36

37 public boolean isFull() {
38 return numRiders == capacity;
39 }
40

41 public void addRiders(int numEntering) {
42 if (numRiders + numEntering <= capacity)
43 numRiders = numRiders + numEntering;
44 else
45 numRiders = capacity;
46 }
47

48 public void goUp() {
49 if (currentFloor < topFloor)
50 currentFloor++;
51 }
52

53 public void goDown() {
54 if (currentFloor > 0)
55 currentFloor--;
56 }
57

58 public void call(int floor) {
59 if (floor >= 0 && floor <= topFloor) {
60 # Mutant Z - Relational Operator Replacement
61 - while (floor != currentFloor)
62 + while (true)
63 {
64 if (floor > currentFloor)
65 goUp();
66 else
67 goDown();
68 }
69 }
70 }
71 }

Fig. 3: The source code of Lift, with three example mutants.

suite exclusively covered the three affected methods, none of
the tests would face such a restriction, and detecting the fault
would be a matter of the tests’ quality alone. This effect is even
more apparent for Mutant Y, which only affects one public
method. It is also possible that this behaviour is correct for the
single faults introduced in most mutants; the faults are often
relatively minor, so they should not lose many grades. In this
sense, suites with higher coverage may provide more accurate
grades for most faults.

Full coverage does not, however, guarantee that faults are
always detected. In Mutant X and Mutant Y, some test suites
provide a 100% grade despite achieving 100% coverage on
these mutants. For these cases, revealing the fault may require
different tests that evaluate results with higher precision, or
exercise an edge condition.

These observations do not necessarily occur for all mutants,
however. Mutant Z exhibits a trend of falling grades as coverage
increases, and has no executions with 100% grades and 100%
coverage. This is due to the mutant’s introduction of a while
(true) loop, which would never terminate, and cause any
tests that execute it to timeout, revealing the fault. Merely
executing such highly fragile faults guarantees that they are
detected. Conversely, if any fault is not covered by tests, it
cannot be detected. This is shown by the 100% grades for
Mutant Z at lower coverage levels; these test suites do not
cover the fault. If a fault in a student’s solution is not covered,
it would prevent them from receiving feedback on why they
made a mistake.
Impact Mitigation
Fortunately, limiting the effect of coverage on grades is
relatively straightforward, a tutor can write a test suite that
achieves 100% coverage on the model solution. Such a test suite
may not achieve 100% coverage on some student solutions,
but in these cases either a student solution’s uncovered code
would not improve correctness, or the uncovered code would
improve correctness but is not executed due to a fault that the
student has introduced elsewhere.

If 100% coverage is difficult to achieve in the model solution,
it is possible that the tests alone are not sufficient. For example,
the model solution may load test data. In this case, test data
should be created that allows for 100% coverage to be achieved.
If it remains impossible to gain 100% coverage, there may
be problems with either the task’s specification or the model
solution themselves; a redesign may be required.

Although it is not covered in this paper, branch coverage can
also be used to ensure that the test suite sufficiently exercises
conditional statements. Most modern IDEs have support for
code coverage metrics, and provide coverage highlighting to
help identify where code is insufficiently exercised by tests.

Suggestion 1: Autograding test suites should achieve 100%
coverage on a model solution.

B. Recoverage

Overall Observations

(a) All Mutants

(b) Mutant X (Incorrect Values)

(c) Mutant Y (Incorrect Values)

(d) Mutant Z (Relational Operator Replacement)

Fig. 4: Generated grades vs. each property for individual executions of Lift mutants with suites of 10 tests across 30 runs.

Figure 4 shows how suites with varying degrees of average
line recoverage generate grades. Recoverage levels are lower
than the other two properties for suites of 10 tests, with
Lift’s maximum recoverage only being ∼48%, despite having
multiple test suites that achieve 100% coverage. This shows
that these test suites are unlikely to cover most lines of each
subject more than once. This may be due to some areas of
the code requiring specific conditions to be covered, and the
limited size of the test suites.

Across the whole set of mutants, grades tend to increase as
recoverage increases. Similarly to coverage, this depends on
how tests cover individual mutants, but perhaps to a greater
extent on a per mutant basis, where the gradients of the lines of
best fit are steeper. At a first glance, this contradicts our findings
for RQ2, where Recoverage has a very low β coefficient for
Lift with suites of 10 tests. This may be due to opposite
cases (e.g. Mutants Y and Z) effectively cancelling each other
out in the set of all mutants. This suggests that, for some faults,
recoverage may have a greater impact than our linear models
suggest, and as such it should not be ignored.
Individual Mutants
The behaviour typical of the full set of mutants is apparent in
Mutant X. Similarly to coverage, the impact of recoverage may
be due to how many tests are covering lines affected by the
mutant; suites with lower recoverage levels may be recovering
only affected lines, while suites with higher recoverage may
recover other parts of the code. This indicates that if the faulty
lines of a solution are covered by disproportionately many
tests, it would lose more grades than if all lines were covered
equally. Conversely, if many non-faulty lines are recovered,
but a faulty line is only covered once, it may receive an overly
high grade. Again, the effect is more prevalent for Mutant Y,
likely due to it only having an effect on a single statement.

The reverse effect occurs for Mutant Z, which has grades of
∼50% for suites with high recoverage, and high grades for low
recoverage. Since this mutant is always detected if it is covered,
and only affects a single method, increased recoverage likely
reduces grades as is it more likely that more of the tests in the
suite are executing (and thus revealing) the fault. Recovering
such fragile faults will have a great impact on the grade that
they receive, compared to other faults that may require specific
assertions to detect. This may be beneficial, since these faults
would greatly impact functionality, but it may also be a source
of unfairness if students are not readily able to detect the fault
when running the program themselves. Providing students with
a set of simple tests to use before submitting their solutions
would help to remedy this issue.
Impact Mitigation
Unevenly recovering some lines of code is likely to affect
fairness; mistakes that are heavily recovered are more likely to
receive lower grades than mistakes that are covered less. While
method dependencies and compound branches will make a
degree of recoverage inevitable, we recommend that care is
taken to avoid needlessly recovering some lines of code more
than others. However, for cases where some portions of the

code are more important with respect to the task’s learning
objectives, or where code is more likely to contain subtle faults,
having greater recoverage may be beneficial.

We have provided our reference implementation of line
recoverage to assist with the identification of recovered
code [15].

Suggestion 2: Tutors should be wary of unevenly recovering
lines when developing their test suites.

C. Test Quality (Mutation Score)

Overall Observations
Figure 4 shows how mutation score relates to generated grades.
One important observation to note in these plots is that no
observed test suite achieves a mutation score of 100%, despite
typically achieving high levels of coverage. This shows that
coverage alone is not sufficient to detect faulty solutions; tests
must also make correct and robust assertions, and exercise
edge conditions. We find an overall trend of grades falling as
mutation score increases.
Individual Mutants
This general behaviour is exhibited by Mutant X. The three
methods that this mutant affects may not always demonstrate
divergent behaviour when tested:
• getNumRiders() would pass tests that expected
numRiders to be equal to capacity.

• isFull() would only fail on tests that expect the
method to return false if capacity - 1 is added to
numRiders.

• addRiders() cannot reveal this fault alone, but allows
for numRiders to be manipulated as described above.

As such, merely covering these methods would not necessarily
reveal this mutant. However, if tests are able to detect faults
in the same methods that exhibit similar behaviour, they are
more likely to detect this mutant. Consider a fault that makes
isFull return numRiders == capacity - 1. Any test
detecting such a fault would also reveal Mutant X.

This behaviour is present with a stronger effect for Mutant
Z. Since this mutant will be detected by any test which covers
it, its relationship between grades and mutation score follows a
similar pattern to its relationship between grades and coverage.
However, these relationships are by no means identical; the
mutation scores of test suites do not directly match their
coverage levels due to more subtle mutants only being detected
by more complex tests. Furthermore, mutation score may have
a stronger relationship for this mutant since the method it
is in (call()) uses multiple conditionals. Other mutants in
this method would only be detected by tests that meet these
conditions; tests that detect those mutants would also detect
this mutant.

Mutant Y exhibits the inverse behaviour; grades increase as
mutation score increases. This is a deviation from its behaviour
for the other properties, where it followed the same trend
as the combination of all mutants. This may be due to a
lack of interaction with other mutants; Mutant Y only has an

effect on one method (getTopFloor()), with no method
dependencies. Furthermore, it only modifies a single statement,
and only the Incorrect Values operator can be applied to this
statement without affecting compilation. Therefore, there will
be proportionally few mutants that also modify this method.
As such, suites with higher mutation scores would have a
smaller proportion of tests that exercise this mutant; it cannot
be detected by most of these tests, receiving a high grade. This
behaviour is similar to that of coverage and recoverage for
this mutant. However, this is not to say that test suites with a
high mutation score are incapable of detecting this mutant; no
suites with the maximum mutation score (∼83%) generate a
100% grade for this mutant. It is likely that such test suites
detect another mutant that affects the same statement.
Impact Mitigation
As discussed in Section IV-A, merely executing faulty state-
ments does not guarantee that the fault is revealed. An effective
means to ensure that tests are capable of detecting faulty
solutions would be to execute them on such faulty solutions.
This could be approached by using existing students’ solutions,
allowing a tutor to check the distribution of grades generated by
the test suite, and to make adjustments if necessary. However,
it may have a significant time cost if the correctness of
these students’ solutions is not already known. This method
would be preferable for any tutors seeking to improve an
existing autograding test suite or to convert a manually assessed
programming task to be autograded.

Another approach is to use mutation analysis, as we did in
this paper. By generating artificial mutants from the model
solution, a tutor can easily verify that the test suite is able
to identify faulty solutions. Any artificial faults that are not
detected by the test suite provide information on how to
improve the test suite. This is reflected in our data, where
some faults have grades of 100% for many test suites, while
none of the test suites detect all of the mutants. If the test
suites had a perfect mutation score, they would be capable of
detecting more faults.

A key benefit of this approach is that it does not require
existing solutions; it is suitable for preparing an autograder for
a new programming assessment. This can also be combined
with student solutions to provide additional confidence that a
test suite is capable of detecting faults. Mutants would however
not be beneficial for tuning grade distributions, though this can
be performed after collecting students’ solutions.

Suggestion 3: Tutors should run their test suites against either
real or artificial student programs to ensure that they can
detect faults.

V. CONCLUSIONS & FUTURE WORK

In this paper, we have shown that different test suites can
yield vastly different grades for faulty solutions. We have also
demonstrated that coverage, and to a lesser extent, mutation
score and recoverage can each affect generated grades of faulty
solution programs. Additionally, we have provided tutors with
suggestions on how they can improve the consistency and

fairness of their automated grading test suites. Specifically, we
recommend writing test suites that achieve 100% coverage, to
avoid unnecessarily recovering statements, and to verify the
effectiveness of grading test suites using mutation analysis or
existing student solutions, where available.

While it has been established that mutants are representative
of real faults in software analysis [13], we will conduct future
work with real student faults to validate whether this also holds
in a grading context. We will also perform further research
into the impact of other test suite properties on higher order
mutants and real student solutions. Such additional properties
may include diagnosability metrics (e.g., [16]), which aim
to assess test suites in terms of how well they support fault
localisation.

ACKNOWLEDGEMENTS

We would like to thank Abdullah Alsharif for his advice
when writing our data analysis script.

Phil McMinn is supported in part by the Institute of Coding,
funded by the Office for Students (OfS), England.

REFERENCES

[1] S. Krusche and A. Seitz, “ArTEMiS – An Automatic Assessment
Management System for Interactive Learning,” in SIGCSE 2018, (New
York, New York, USA), pp. 284–289, ACM Press, 2018.

[2] D. M. Souza, K. R. Felizardo, and E. F. Barbosa, “A systematic literature
review of assessment tools for programming assignments,” in CSEET
2016, pp. 147–156, IEEE, 2016.

[3] D. Insa and J. Silva, “Automatic assessment of Java code,” Computer
Languages, Systems and Structures, vol. 53, pp. 59–72, 2018.

[4] K. Dewey, P. Conrad, M. Craig, and E. Morozova, “Evaluating Test
Suite Effectiveness and Assessing Student Code via Constraint Logic
Programming,” ITiCSE 2017, vol. 6, 2017.

[5] M. R. Hoffmann, E. Mandrikov, and M. Friedenhagen, “JaCoCo Java
Code Coverage Library.” http://eclemma.org/jacoco/, 2016.

[6] G. Fraser, A. Gambi, M. Kreis, and J. M. Rojas, “Gamifying a software
testing course with code defenders,” SIGCSE 2019, pp. 571–577, 2019.

[7] J. M. Rojas, T. D. White, B. Clegg, and G. Fraser, “Code Defenders:
Crowdsourcing Effective Tests and Subtle Mutants with a Mutation
Testing Game,” in ICSE 2017, pp. 677–688, IEEE, 2017.

[8] B. Clegg, S. S. North, P. McMinn, and G. Fraser, “Simulating Student
Mistakes to Evaluate the Fairness of Automated Grading,” in ICSE-SEET
2019, pp. 121–125, IEEE, 2019.

[9] R. Just, “The Major Mutation Framework: Efficient and Scalable Mutation
Analysis for Java,” 2014.

[10] R. Just, F. Schweiggert, and G. M. Kapfhammer, “MAJOR: An efficient
and extensible tool for mutation analysis in a Java compiler,” in ASE
2011, pp. 612–615, IEEE, 2011.

[11] N. Smith, D. Van Bruggen, and F. Tomassetti, “JavaParser: Visited.”
https://leanpub.com/javaparservisited, 2019.

[12] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
mutation analysis for assessing and comparing testing coverage criteria,”
IEEE Trans. Softw. Eng., vol. 32, no. 8, pp. 608–624, 2006.

[13] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?,”
Proceedings of the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, vol. 16-21-Nove, pp. 654–665, 2014.

[14] G. C. S. Wang, “How to handle multicollinearity in regression model-
ing.pdf,” Journal of Business Forecasting Methods & Systems, vol. 15,
no. 1, pp. 23–27, 1996.

[15] B. Clegg, “CoverWeight Git Repository (BitBucket).” https://bitbucket.
org/BenClegg/coverweight/src/master/, 2020.

[16] A. Perez, R. Abreu, and A. Van Deursen, “A Test-Suite Diagnosability
Metric for Spectrum-Based Fault Localization Approaches,” in ICSE
2017, pp. 654–664, IEEE, 2017.

