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ABSTRACT
Genetic Algorithms have been successfully applied to the
generation of unit tests for classes, and are well suited to
create complex objects through sequences of method calls.
However, because the neighborhood in the search space for
method sequences is huge, even supposedly simple optimiza-
tions on primitive variables (e.g., numbers and strings) can
be ineffective or unsuccessful. To overcome this problem, we
extend the global search applied in the EvoSuite test gen-
eration tool with local search on the individual statements
of method sequences. In contrast to previous work on local
search, we also consider complex datatypes including strings
and arrays. A rigorous experimental methodology has been
applied to properly evaluate these new local search opera-
tors. In our experiments on a set of open source classes of dif-
ferent kinds (e.g., numerical applications and text process-
ing), the resulting test data generation technique increased
branch coverage by up to 32% on average over the normal
Genetic Algorithm.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search;
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Experimentation, Reliability

Keywords
EvoSuite, Search-based Software Engineering, Object-oriented,
Evolutionary Testing

1. INTRODUCTION
Software testing is one of the most important techniques

applied to improve software quality. When there is no auto-
mated test oracle available, as for example is often the case in
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c l a s s Foo {
boolean bar ( S t r ing s ) {

i f ( s . equa l s ( ”bar ”) )
// t a r g e t

}
}

Foo foo = new Foo ( ) ;
S t r ing s = ” t e s t ”;
foo . bar ( s ) ;

Figure 1: Example class and test case: In theory,
four edits of s can lead to the target branch being
covered. However, with a Genetic Algorithm where
each statement of the test is mutated with a certain
probability (e.g., 1/3 when there are three state-
ments) one would have to be really lucky: If the test
is part of a test suite (size 10) of a Genetic Algorithm
(population 50) and we only assume a character
range of 128, then even if we ignore all the complex-
ities of Genetic Algorithms, we would still need on
average at least 50×4×1/( 1

10
× 1

3
× 1

128
) = 768,000 fitness

evaluations before covering the target branch.

white-box testing, test generation techniques aim to produce
small test suites with high code coverage, such that these
test suites can be analyzed by the developer in feasible time.
In the case of object-oriented classes, test cases amount to
sequences of method calls, and search-based testing [18] has
been demonstrated to be an effective solution as it can han-
dle not only optimizations on primitive datatypes, but also
on complex data structures and sequences of method calls.
The use of search-based techniques for optimizing entire test
suites towards high branch coverage for classes [10] has been
shown to be a successful technique for this purpose. Empir-
ical experiments have shown that it is practically usable on
a wide range of programs [9].

When an individual of the search is a test suite consisting
of a variable number of test cases, each of which is a sequence
of method calls of variable length, then the neighborhood in
the search space is simply huge: Here, a neighbor is not only
defined by the next successive value for primitive types, but
also as all the possible calls that can be inserted on existing
objects and all the possible changes that can be performed
on the sequences of method calls. If somewhere in such a
test suite there is an individual primitive value that needs to
be optimized, then the probability of it being mutated dur-
ing the search with a Genetic Algorithm is low, and so the
optimization towards the targets dependent on this value
can take long. The urgency of this problem becomes even
more apparent when one also considers string variables as
primitives, where again the neighborhood is huge. Consider



the example test case in Figure 1: Even under very strong
simplifications, with a “basic” Genetic Algorithm we would
need an average of at least 768,000 costly fitness evaluations
(i.e., test executions) to cover the target branch. If the bud-
get is limited, then indeed the approach might fail to cover
such goals.

To overcome this problem, we extend the Genetic Algo-
rithm used in the whole test suite generation approach to
a Memetic Algorithm: At regular intervals, the search in-
spects the primitive variables and tries to apply local search
to improve them. Although these extensions are intuitively
useful and tempting, they add additional parameters to the
already large parameter space. In fact, misusing these tech-
niques can even lead to worse results, and so we conducted a
detailed study to find the best parameter settings. In detail,
the contributions of this paper are:

Memetic algorithm for test suite optimization: We
present a novel approach to integrate local search on primi-
tive values in a global search for test suites.

Local search for complex values: We extend the no-
tion of local search as commonly performed on numerical
inputs to string inputs, arrays, and objects.

Sensitivity analysis: We have implemented the approach
as an extension to the EvoSuite tool [10], and analyze
the effects of the different parameters involved in the local
search, and determine the best configuration.

Evaluation: We evaluate our approach on a set of 16
open source classes, and compare the results to the standard
search-based approach that does not include local search.

2. BACKGROUND
Search-based testing applies meta-heuristic search tech-

niques to the task of test data generation [18].

2.1 Local Search Algorithms
With local search algorithms [2] one only considers the

neighborhood of a candidate solution. For example, a hill
climbing search is usually started with a random solution,
of which all neighbors are evaluated with respect to their
fitness for the search objective. The search then continues on
either the first neighbor that has improved the fitness, or the
best neighbor, and again considers its neighborhood. The
search can easily get stuck in local optima, which is typically
overcome by restarting the search with new random values.
A popular version of hill climbing often used in test data
generation is Korel’s Alternating Variable Method [7,16].

The Alternative Variable Method (AVM) is a local search
technique similar to hill climbing, and was introduced by
Korel [16]. The AVM considers each input variable of an
optimization function in isolation, and tries to optimize it
locally. Initially, variables are set to random values. Then,
AVM starts with exploratory moves on the first variable.
For example, in the case of an integer an exploratory move
consists of adding a delta of +1 or −1. If the exploratory
move was successful (i.e., the fitness improved), then the
search accelerates movement with pattern moves. For exam-
ple, in the case of an integer, the search would next try +2,
then +4, etc. Once the next step of the pattern search does
not improve the fitness any further, the search goes back
to exploratory moves on this variable. If successful, pattern
search is again applied in the direction of the exploratory
move. Once no further optimization of the variable is possi-
ble, the search moves on to the next variable. If no variable

can be improved the search restarts at another randomly
chosen location to overcome local optima.

2.2 Global Search Algorithms
In contrast, global search algorithms try to overcome lo-

cal optima in order to find more globally optimal solutions.
Harman and McMinn [14] recently determined that global
search is more effective than local search, but less efficient,
as it is more costly.

With evolutionary testing, one of the most commonly ap-
plied global search algorithms is a Genetic Algorithm (GA).
A GA tries to imitate the natural processes of evolution:
An initial population of usually randomly produced candi-
date solutions is evolved using search operators that resem-
ble natural processes. Selection of parents for reproduction
is based on their fitness (survival of the fittest). Reproduc-
tion is performed using crossover and mutation with certain
probabilities. With each iteration of the GA, the fitness of
the population improves, until either an optimal solution
has been found, or some other stopping condition has been
met (e.g. maximum time or number of fitness evaluations).
In evolutionary testing, the population would for example
consist of test cases, and the fitness estimates how close a
candidate solution is to satisfying a coverage goal. The ini-
tial population is usually generated randomly, i.e., a fixed
number of random input values is generated. The operators
used in the evolution of this initial population depend on
the chosen representation.

A fitness function guides the search in choosing individu-
als for reproduction, gradually improving the fitness values
with each generation until a solution is found. For example,
to generate tests for branch coverage, a common fitness func-
tion [18] integrates the approach level (number of unsatisfied
control dependencies) and the branch distance (estimation
of how close the deviating condition is to evaluating as de-
sired). Such search techniques have not only been applied in
the context of primitive datatypes, but also to test object-
oriented software using method sequences [11,21].

2.3 Memetic Algorithms
A Memetic Algorithm (MA) hybridizes global and local

search. The use of MAs for test generation was originally
proposed by Wang and Jeng [22] in the context of test gen-
eration for procedural code. Arcuri [5] combined a GA
with hill climbing to form a MA when generating unit tests
for container classes. Harman and McMinn [14] analyzed
the effects of global and local search, and concluded that
MAs achieve better performance than global search and lo-
cal search. Baresi et al. [6] also use a hybrid evolutionary
search in their TestFul test generation tool, where at the
global search level a single test case aims to maximize cov-
erage, while at the local search level the optimization targets
individual branch conditions.

3. WHOLE TEST SUITE GENERATION
In whole test suite generation, the optimization target is

not to produce a test that reaches one particular coverage
goal, but it is to produce a complete test suite that maxi-
mizes coverage, while minimizing the size at the same time.

3.1 Representation
An individual of the search is a test suite, which is repre-

sented as a set T of test cases ti. Given |T | = n, we have



T = {t1,t2, . . . ,tn}. A test case is a sequence of statements
t = 〈s1,s2, . . . ,sl〉 of length l. The length of a test suite
is defined as the sum of the lengths of its test cases, i.e.,
length(T ) =

∑
t∈T lt.

There are several different types of statements in a test
case: Primitive statements define primitive values, such as
Booleans, integers, or Strings; Constructor statements in-
voke constructors to produce new values; Method statements
invoke methods on existing objects, using existing objects
as parameters; Field statements retrieve values from public
members of existing objects; Array statements define ar-
rays; Assignment statements assign values to array indexes
or public member fields of existing objects. Each of these
statements defines a new variable, with the exception of void
method calls and assignment statements. Variables used as
parameters of constructor and method calls and as source
objects for field assignments or retrievals need to be already
defined by the point at which they are used in the sequence.

Crossover of test suites means that offspring recombine
subsets from parent test suites. For example, for two se-
lected parents P1 and P2, a random value α is chosen from
[0,1], and on one hand, the first offspring O1 will contain
the first α|P1| test cases from the first parent, followed by
the last (1 − α)|P2| test cases from the second parent. On
the other hand, the second offspring O2 will contain the first
α|P2| test cases from the second parent, followed by the last
(1− α)|P1| test cases from the first parent.

Mutation of test suites means that test cases are inserted,
deleted, or changed. With probability σ, a test case is added.
If it is added, then a second test case is added with prob-
ability σ2, and so on until the ith test case is not added
(which happens with probability 1 − σi). Each test case
is changed with probability 1/|T |. There are many differ-
ent options to change a test case: One can delete or alter
existing statements, or insert new statements. We perform
each of these three operations with probability 1/3; on aver-
age, only one of them is applied, although with probability
(1/3)3 all of them are applied. When removing statements
from a test it is important that this operation must ensure
that all dependencies are satisfied. Inserting statements into
a test case means inserting method calls on existing calls, or
adding new calls on the class under test. For details on the
mutation operators we refer to [10].

3.2 Fitness Function
In this paper, we consider branch coverage as the opti-

mization target, although the approach can be applied to
any coverage criterion that can be expressed with a fit-
ness function. Typically, fitness functions for other coverage
criteria are based on the branch coverage fitness function.
Branch coverage requires that for every conditional state-
ment in the code there is at least one test that makes it
evaluate to true, and one that makes it evaluate to false.
For this, we can use a standard metric used in search-based
testing, the branch distance.

For every branch, the branch distance estimates how close
that branch was to evaluating to true or to false. For exam-
ple, if we have the branch x == 17, and a concrete test case
where x has the value 10, then the branch distance to make
this branch true would be 17 − 10 = 7, while the branch
distance to making this branch false is 0. To achieve branch
coverage in whole test suite generation, the fitness function
tries to optimize the sum of all normalized, minimal branch

distances to 0 – if for each branch there exists a test such
that the execution leads to a branch distance of 0, then all
branches have been covered.

3.3 Search Guidance on Strings
The fitness function in whole test suite generation is based

on branch distances. EvoSuite works directly on Java byte-
code, where except for reference comparisons, the branching
instructions are all based on numerical values. Compar-
isons on strings first map to Boolean values, which are then
used in further computations; e.g., a source code branch like
if(string1.equals(string2)) consists of a method call on
String.equals followed by a comparison of the Boolean re-
turn value with true. To offer guidance on string based
branches we replace calls to the String.equals method with
a custom method that returns a distance measurement [17].
The branching conditions comparing the Boolean with true

thus have to be changed to check whether this distance mea-
surement is greater than 0 or not (i.e., == true is changed to
== 0, and == false is changed to > 0). The distance mea-
surement itself depends on the search operators used; for
example, if the search operators support inserts, changes,
and deletions, then the Levenshtein distance measurement
can be used. This transformation is an instance of testability
transformation [12], which is commonly applied to improve
the guidance offered by the search landscape of programs.

Search operators for string values have initially been pro-
posed by Alshraideh and Bottaci [1]. Based on our distance
measurement, when a primitive statement defining a string
value is mutated, each of the following is applied with prob-
ability 1/3 (i.e., with probability (1/3)3 all are applied):

Deletion: Every character in the string is deleted with prob-
ability 1/n, where n is the length of the string. Thus,
on average, one character is deleted.

Change: Every character in the string is changed with prob-
ability 1/n; if it is changed, then it is replaced with a
random character.

Insertion: With probability α = 0.5, a random character
is inserted at a random position p within the string.
If a character was inserted, then another character is
inserted with probability α2, and so on, until no more
characters are inserted.

4. APPLYING MEMETIC ALGORITHMS
The whole test suite generation presented in the previ-

ous section is a global optimization technique, which means
that we are trying to optimize an entire candidate solution
towards the global optimum (maximum coverage). Search
operations in global search can lead to large jumps in the
search space. In contrast, local search explores the imme-
diate neighborhood. For example, if we have a test suite
consisting of X test cases of average length L, then the prob-
ability of mutating one particular primitive value in there is
1
X
× 1

L
. However, evolving a primitive value to a target value

may require many steps, and so global search can easily ex-
ceed the search budget before finding a solution. This is a
problem that local search can overcome.

4.1 Local Search on Method Call Sequences
The aim of the local search is to optimize the values in

one particular test case of a test suite. When local search is
applied to a test case, EvoSuite iterates over its sequence of



statements from the last to the first, and for each statement
applies a local search dependent on the type of the state-
ment. Local search is performed for the following types of
statements: primitive statements, method statements, con-
structor statements, field statements and array statements.

4.1.1 Primitive Statements
Booleans and Enumerations: For Boolean variables

the only option is to flip the value. For enumerations, an
exploratory move consists of replacing the enum value with
any other value, and if the exploratory move was successful,
we iterate over all enumeration values.

Integer Datatypes: For integer variables (which in-
cludes all flavors such as byte, short, char, int, long) the
possible exploratory moves are +1 and −1. The exploratory
move decides the direction of the pattern move. If an ex-
ploratory move to +1 was successful, then with every itera-
tion I of the pattern search we add δ = 2I to the variable.
If +1 was not successful, −1 is used as exploratory move,
and if successful, subsequently δ is subtracted.

Floating Point Datatypes: For floating point vari-
ables (float, double) we use the same approach as orig-
inally defined by Harman and McMinn [13] for handling
floating point numbers with the AVM. Exploratory moves
are performed for a range of precision values p, where the
precision ranges from 0–7 for float variables, and from 0–
15 for double values. Exploratory moves are applied using
δ = 2I×dir×10−p. Here dir denotes either +1 or −1, and I
is the number of the iteration, which is 0 during exploratory
moves. If an exploratory move was successful, then pattern
moves are made by increasing I when calculating δ.

Strings: For string variables, exploratory moves are
slightly more complicated: To determine if local search on
a string variable is necessary, we first apply n random mu-
tations on the string1. These mutations are the same as
described in Section 3.3. If any of the n probing mutations
changed the fitness, then we know that the string has some
effect on it, regardless of whether the change resulted in an
improvement or not. As discussed in Section 3.3, string val-
ues affect the fitness through a range of Boolean conditions
that are used in branches; these conditions are transformed
such that the branch distance also gives guidance on strings.
If the probing on a string showed that it affects the fitness,
then we apply a systematic local search on the string. The
operations on the string must reflect the distance estimation
applied on string comparisons:
Deletion: First, every single character is removed and the

fitness value is checked. If the fitness did not improve,
the character is kept in the string.

Change: Second, every single character is replaced with ev-
ery possible other character; for practical reasons, we
restrict the search to ASCII characters. If a replace-
ment is successful, we move to the next character. If
a character was not successfully replaced, the original
character stays in place.

Insertion: Third, we insert new characters. Because the
fitness evaluation requires test execution, trying to in-
sert every possible character at every possible position

1In theory, static analysis could also be used to determine
when a string is a data dependency of one of the target
branches; however, as the method sequences may use many
different classes that are not known ahead of time, this is
non-trivial.

would be too expensive – yet this is what would be re-
quired when using the standard Levenshtein distance
(edit distance) as distance metric. Consequently, we
only attempt to insert characters at the front and the
back, and adapt the distance function for strings ac-
cordingly.

The distance function for two strings s1 and s2 used during
the search is (c.f. [15]):

distance(s1,s2) = |length(s1)− length(s2)|+∑min(length(s1),length(s2))
i=0 distance(s1[i],s2[i])

4.1.2 Array Statements
Local search on arrays concerns the length of an array

and the values assigned to the slots of the array. To allow
efficient search on the array length, the first step of the local
search is to try to remove assignments to array slots. For
an array of length n, we first try to remove the assignment
at slot n− 1. If the fitness value remains unchanged, we try
to remove the assignment at slot n− 2, and so on, until we
find the highest index n′ for which an assignment positively
contributes to the fitness value. Then, we apply a regular
integer-based local search on the length value of the array,
making sure the length does not get smaller than n′ + 1.
Once the search has found the best length, we expand the
test case with assignments to all slots of the array which
are not already assigned in the test case (such assignments
may be deleted as part of the regular search). Then, on each
assignment to the array we perform a local search, depending
on the component type of the array.

4.1.3 Reference Type Statements
Statements related to reference values (method statement,

constructor statement, field statement) do not allow tradi-
tional local search in terms of primitive values. The neigh-
borhood of a complex type in a sequence of calls is huge
(e.g., all possible calls on an object with all possible param-
eter combinations, etc.), such that exhaustive search is not a
viable option. Therefore, we apply randomized hill climbing
on such statements. This local search consists of repeat-
edly applying random mutations to the statement, and it is
stopped if there are R consecutive mutations that did not
improve the fitness (in our experiments, R = 10).

We use the following mutations for this randomized hill
climbing:
• Replace the statement with a random call returning

the same type.
• Replace a parameter (for method and constructor state-

ments) or the receiving object (for field and method
statements) with any other value of the same type
available in the test case.
• If the call creates a non-primitive object, add a random

method call on the object after the statement.
The fitness function described in Section 3 requires that

every branch is executed twice, such that there is at least
one run we can optimize towards executing the branch to
one direction, without losing the other direction. If during
local search we determine that there is a branch that is only
executed once, as a further optimization we duplicate its test
case within the test suite.

4.2 Memetic Algorithm
Given the ability to perform local search on the individ-

uals of a global optimization there is the question of how



Table 1: Case Study Classes
“Branches” is the number of branches reported by EvoSuite; “LOC”
refers to the number of non-commenting source code lines reported

by JavaNCSS (http://www.kclee.de/clemens/java/javancss).

Project Class LOC Branches

Roops IntArrayWithoutExceptions 64 43
Roops LinearWithoutOverflow 223 93
Roops FloatArithmetic 68 49
Roops IA.WithArrayParameters 30 29
SCS Cookie 18 13
SCS DateParse 32 39
SCS Stemmer 345 344
SCS Ordered4 11 29
NanoXML XMLElement 661 310
Commons CLI CommandLine 87 45
JDOM Attribute 138 65
Commons Codec DoubleMetaphone 579 504
java.util ArrayList 151 70
NCS Bessj 80 29
Commons Math FastFourierTransformer 290 135
Joda Time DateTimeFormat 356 434

to integrate these techniques. Often, MAs are implemented
such that individuals can perform Lamarckian or Baldwinian
learning immediately after reproduction [20]. This, however,
raises the questions of how often to apply the individual
learning, on which individuals it should be applied, and how
long it should be done. Because local search can be very
expensive, we would like to direct the learning towards the
better individuals of the population, such that newly gen-
erated genetic material is more likely to directly contribute
towards the solution.

In EvoSuite, local search is applied at regular intervals;
the rate at which it is applied is the first parameter of local
search. When local search is applied, we iterate over the
population ranked by their fitness, such that the first indi-
vidual to be improved is the best individual of the search,
then the second best, and so on. Thus, as a second param-
eter, there is a search budget for this local search.

5. EVALUATION
The presented techniques depend on a number of param-

eters, and so evaluation needs to be carefully done with re-
spect to these. We therefore aim to empirically answer the
following three research questions:

RQ1: Does local search improve the performance of whole
test suite generation?

RQ2: Which parameter combination gives the best re-
sults?

RQ3: How do the results vary based on the available
search budget?

5.1 Experimental Setup
To answer the research questions, we first need to decide

for how long and how often to run local search in the MA;
these are the two parameters discussed in Section 4.2. Be-
cause how often we apply local search depends on the num-
ber X of generations, how much local search is actually done
is dependent on the population size. Consequently, we also
had to consider the population size when designing the ex-
periments. We also considered seeding from bytecode [8] as
a further parameter to experiment with, as we expected it
to have a large impact on the performance in the cases in
which local search is successful (and this is confirmed in the
experiments). In total, we had four different parameters to
experiment with.

For our evaluation, we used the classes already used in
previous experiments [4], but had to exclude those on which
EvoSuite trivially achieves 100% coverage. In the choice
of a variegated set of classes to experiment with, we tried
to strike a balance among the different kinds of classes. To
this end, beside classes coming from the case study in [4], we
also included four benchmark classes on integer and float-
ing point calculations from the Roops2 benchmark suite for
object-oriented testing, This results in a total of 16 classes,
of which some characteristics are given in Table 1.

The use of only 16 classes was necessitated by the com-
plex evaluation setup. In this paper, we study the effects of
four different parameters. For population size, local search
budget and rate we considered five different values, i.e.,
{5, 25, 50, 75, 100}, and for seeding two (on/off). We also
included further configurations without local search (i.e., the
default GA in EvoSuite), but still considering the different
combinations of population size and seeding.

On each class, for each parameter, we ran EvoSuite 30
times with different random seeds to take into account their
random nature. In each run, the stopping criterion was a
10 minute timeout. Thus, in total the experiments took
((2 × 53) + (2 × 5)) × (30 × 10 × 16)/(60 × 24) = 866 days
of computational time, which required the use of a cluster
of computers. During these runs, EvoSuite was configured
using the optimal configuration determined in our previous
experiments on tuning [4].

5.2 Results
For both the cases in which seeding was used and not, we

analyzed the 125 configurations using MA, and chose the
one that resulted with highest average coverage over the 16
classes in the case study. The same is done for the basic GA,
i.e., we evaluated which configuration of the population size
gave best results. We call these four configurations (two for
MA, and two for GA)“tuned”. Table 2 shows the comparison
between the tuned MA and tuned GA configuration based
on whether seeding was used.

To evaluate the statistical and practical differences among
the different settings, we followed the guidelines in [3]. Sta-
tistical difference is evaluated with a two-tailed Mann-Whitney
U-test, whereas the magnitude of improvement is quantified
with the Vargha-Delaney standardized effect size Â12.

Results in Table 2 answer RQ1 by clearly showing, with
high statistical confidence, that the MA outperforms the
standard GA in many, but not all, cases. For classes such
as Cookie, improvements are as high as a 87 − 55 = 32%
average coverage difference (when seeding is not used).

RQ1: The MA achieved up to a 32% higher branch
coverage than the standard GA.

One thing that is clearly visible in Table 2 is that seed-
ing, as expected [8], leads to higher results. On one hand,
when seeding is not used, the difference in average coverage
between the MA and the GA is 86− 79 = 7%. On the other
hand, when seeding is used, the difference is 89− 88 = 1%.
At a first look, such an improvement might be considered
low. But the statistics in Table 2 points out a relatively high
average 0.61 effect size, with four classes having a strong sta-
tistical difference. This is not in contrast with the 1% differ-
ence in the raw values of the achieved coverage. What the

2http://code.google.com/p/roops/



Table 2: Comparison of average coverage obtained by the tuned MA and by the tuned GA. Effect sizes (Â12)
with statistically significant difference at 0.05 level are shown in bold. Data are divided based on whether
seeding was used or not.

Case Study Without Seeding With Seeding
MA GA Â12 MA GA Â12

roops.core.bv32.arr.noex.IntArrayWithoutExceptions 0.90 0.86 0.91 0.92 0.92 0.57
roops.core.bv32.linear.noex.gods.LinearWithoutOverflow 0.98 0.74 1.00 0.98 0.92 1.00
roops.extended.bv32.floats.FloatArithmetic 0.65 0.49 1.00 0.86 0.86 0.50
scs.Cookie 0.87 0.55 0.94 0.95 0.95 0.52
scs.DateParse 0.87 0.69 1.00 1.00 1.00 0.50
net.n3.nanoxml.XMLElement 0.98 0.98 0.52 0.98 0.98 0.54
org.apache.commons.cli.CommandLine 0.98 0.98 0.50 0.97 0.97 0.49
org.jdom.Attribute 0.84 0.79 0.99 0.86 0.86 0.57
org.apache.commons.codec.language.DoubleMetaphone 0.75 0.71 0.98 0.84 0.82 0.76
java2.util2.ArrayList 0.94 0.94 0.48 0.94 0.94 0.50
scs.Stemmer 0.72 0.73 0.47 0.74 0.72 0.77
ncs.Bessj 0.97 0.96 0.57 0.97 0.97 0.50
org.apache.commons.math.transform.FastFourierTransformer 0.63 0.62 0.42 0.62 0.63 0.53
org.joda.time.format.DateTimeFormat 0.81 0.74 1.00 0.83 0.77 1.00
scs.Ordered4 0.97 0.95 0.61 0.95 0.95 0.46
roops.extended.bv32.arr.noex.IntArrayWithoutExceptionsWithArrayParameters 0.90 0.90 0.50 0.90 0.90 0.50

Average 0.86 0.79 0.74 0.89 0.88 0.61

data in Table 2 suggest is that, when seeding is employed,
there are still some branches that are not covered with the
GA, and so require the local search of the MA to be reached.

To answer RQ2 we can look at the configuration that gave
the best result on average. This configuration uses an MA
algorithm with seeding, small population size (five individ-
uals), low rate of local search (every 75 generations), and
a small budget of five fitness evaluations for local search.
In other words, on average the best result is achieved us-
ing local search infrequently and with a low budget. This is
surprising, and in Table 2 we see that the results change sig-
nificantly between individual classes. This suggests that the
benefit of local search is highly dependent on the problem
at hand. For example, in a class with many string inputs,
much of the budget may be devoted to local search, even
if the input strings have no effect on code coverage levels.
Although we do see an improvement, even on average, this
clearly points out the need for parameter control—in order
to adaptively change the local search configuration to the
class under test and current state of the search.

At any rate, one problem with parameter tuning is that,
given a large set of experiments from which we choose the
best configuration, such a configuration could be too specific
for the employed case study [4]. This is a common problem
that in Machine Learning is called overfitting [19].

To reduce the threats of this possible issue, we applied a
k-fold cross validation on our case study (for more details,
see for example [19]). Briefly, we divided the case study in
k = 16 groups, chose the best configuration out of the 250
on k − 1 groups (training), and calculated its performance
on the remaining group (validation). This process is then
repeated k times, each time using a different group for the
validation. Then, the average of these k performance values
on the validation groups is used as an estimate of actual
performance of tuning on the entire case study (the “tuned”
configuration) when applied on other new classes (i.e., does
the tuning process overfit the data?).

The obtained estimate for best MA configuration was 0.89,
which is the same as the average value 0.89 in Table 2.

Therefore, the best parameter configuration we found is not
overfitted to the case study examples.

RQ2: The best configuration is the MA with small
population size and local search applied infrequently with

small search budget.

The time spent for test data generation (i.e., the testing
budget) is perhaps the only parameter that practitioners
would need to set. For a successful technology transfer from
academic research to industrial practice, the internal details
(i.e., how often and how long to run local search inside Evo-
Suite) of a tool should be hidden from the users, and thus
this choice should be made before the tools are released to
the public. However, usually the best parameter configura-
tion is strongly related to the testing budget [4].

To answer RQ3, we studied the performance of the tuned
MA and the tuned GA at different time intervals. In partic-
ular, during the execution of EvoSuite, for all the config-
urations we kept track of the best solution found so far at
every minute (for both the GA and the MA). With all these
data, at every minute we also calculated the “best” MA con-
figuration (out of 250) and the “best” GA (out of 10) at that
particular point in time. By definition, the performance of
the “tuned” MA is equal or lower than the one of the “best”
MA. Recall that “tuned” is the configuration that gives the
“best” results at 10 minutes.

From a practical stand point, it is important to study
whether the “tuned” MA is stable compared to the “best”
MA. In other words, if we tune a configuration considering
a 10 minute timeout, are we still going to get good results
(compared to the “best” MA and GA) if the practitioner de-
cides to stop the search beforehand? Or was 10 minutes just
a lucky choice? Figure 2 answers these questions by showing
that, already from three minutes on, “tuned” performs very
similar to the “best” configuration. Furthermore, regardless
of the time, there is always a large gap between the “tuned”
MA and GA.

Figure 2 shows the results averaged on all 16 classes in the
case study. Thanks to the relatively small number of classes,
in Figure 3 we can show the time analysis for each class
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Figure 3: For each class in the case study, average coverage at different points in time for the “best” GA
(dotted line), “best” MA (dashed line) and “tuned” MA at 10 minutes (solid line).

individually. The results provide interesting further insight
by showing very different behaviors among classes. This
stresses the importance of a rigorous empirical procedure
when testing techniques are analyzed.

A peculiar result in Figure 3 is that, for the best MA, the
performance is not monotonically increasing through time
(as it is in Figure 2). This is particularly evident for the
class FastFourierTransformer. The reason is that, at each
point (minute) in time, we are considering the configuration
with highest coverage averaged over all the 16 classes. Al-
though on average the performance improves monotonically
(Figure 2), on single classes in isolation everything could in
theory happen (Figure 3).

RQ3: The best configuration only differs for small
search budgets, and is consistent across higher budgets.

6. THREATS TO VALIDITY
This paper compares the whole test suite generation ap-

proach based on a Genetic Algorithm to a hybrid version
that uses a Memetic Algorithm with local search. Threats
to construct validity are on how the performance of a test-
ing technique is defined. We measured the performance in
terms of branch coverage. However, in practice we might

not want a much larger test suite if the achieved coverage is
only slightly higher. Furthermore, this performance measure
does not take into account how difficult it will be to man-
ually evaluate the test cases and to add assert statements
(i.e., to check the correctness of the outputs).

Threats to internal validity might come from how the em-
pirical study was carried out. To reduce the probability of
having faults in our testing framework, it has been carefully
tested. But it is well known that testing alone cannot prove
the absence of defects. Furthermore, randomized algorithms
are affected by chance. To cope with this problem, we ran
each experiment 30 times, and we followed rigorous statisti-
cal procedures to evaluate their results.

There is also the threat to external validity regarding the
generalization to other types of software, which is common
for any empirical analysis. Because of the large number of
experiments required, we only used 16 classes for our eval-
uation. To make claims on generalization we will need to
conduct further studies on representative sets of classes.

7. CONCLUSIONS
Whole test suite generation has been shown to be effec-

tive at producing test suites with high coverage for object-
oriented classes. However, as mutations on any particular
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Figure 2: Average coverage at different points in
time for the “best” GA (at each minute interval),
the MA tuned at 10 minutes, and “best” MA con-
figuration at each minute interval.

statement in a test suite of sequences of method calls have a
low probability of occurring, it is not necessarily efficient. To
overcome this problem, we have defined a set of local search
operators, and extended the Genetic Algorithm used in the
EvoSuite test generation tool to a Memetic Algorithm. Ex-
periments on a set of case study classes have demonstrated
that this approach results in higher coverage given a fixed
search budget. We have observed that the effect is very de-
pendent on the class on which test generation is applied,
which makes it difficult to find an optimal parameter con-
figuration. It will therefore be important for future work to
make the local search adaptive, such that local search oper-
ators that lead to success on a particular problem instance
are applied more frequently than those that are not.

For more information about EvoSuite please visit:

http://www.evosuite.org/
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