
A Theoretical & Empirical Analysis of Evolutionary Testing
and Hill Climbing for Structural Test Data Generation

Mark Harman
King’s College London, Strand,

London, WC2R 2LS, UK

mark.harman@kcl.ac.uk

Phil McMinn
University of Sheffield, Regent Court,

211 Portobello St, Sheffield, S1 4DP, UK

p.mcminn@dcs.shef.ac.uk

ABSTRACT

Evolutionary testing has been widely studied as a technique
for automating the process of test case generation. However,
to date, there has been no theoretical examination of when
and why it works. Furthermore, the empirical evidence for
the effectiveness of evolutionary testing consists largely of
small scale laboratory studies. This paper presents a first
theoretical analysis of the scenarios in which evolutionary
algorithms are suitable for structural test case generation.
The theory is backed up by an empirical study that con-
siders real world programs, the search spaces of which are
several orders of magnitude larger than those previously con-
sidered.
Categories and Subject Descriptors. D.2.5 [Software Engineer-
ing]: Testing and Debugging – Testing Tools; I.2.8 [Artificial Intel-
ligence]: Problem Solving, Control Methods, and Search – Heuristic
Methods

General Terms. Algorithms, Experimentation, Measurement, Per-
formance, Theory

Keywords. Automated test data generation, evolutionary testing,
genetic algorithms, hill climbing, schema theory, royal road

1. INTRODUCTION
Evolutionary Testing (ET) is the process of automatically

generating test data according to a test adequacy criterion
(encoded as a fitness function) using evolutionary search al-
gorithms, whose search is guided by a fitness function. ET
has been widely studied in the literature, where it has been
applied to many test data generation scenarios including
temporal testing [26], stress testing [7], finite state machine
testing [8] and exception testing [23]. By far the most com-
mon form of evolutionary testing considered in the literature
is structural test data generation [5, 6, 12, 13, 14, 16, 21,
24, 25, 28, 29] and it is this topic that forms the subject of
this paper.

Despite the considerable level of interest in ET, to date
there has been no theoretical analysis that characterizes the
types of test data generation scenario for which ET is pre-
dicted to be effective. As a result, there is a serious lack of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Submitted to ISSTA ’07

Copyright 2007 ACM XXXXXXXXX/XX/XX ...$5.00.

firm, scientific underpinning for what has become a widely
researched approach to test data generation. Furthermore,
the empirical results for evolutionary testing tend to con-
sider small, artificial ‘laboratory programs’ rather than real
world programs with large and complex search spaces. This
leaves the literature with some important open questions,
such as

“When and why does ET work?”

and

“How does ET performance compare to other
search techniques?”

This paper addresses these questions. It presents a theo-
retical development of Holland’s well known schema theory
[22]. The schema theory was later developed by Mitchell et
al. [19] in a study of the so-called ‘Royal Road’ functions,
which account for the effect of the all-important crossover
operator of genetic algorithms. Both the schema theory and
the Royal Road theory were developed purely for binary ge-
netic algorithms and have not been previously adapted for
the more complex chromosomes required by ET.

The paper introduces a generalization of both theories
that does cater for ET, showing how the generalized the-
ory predicts the kinds of ‘Royal Road’ search problem for
which ET will be well suited. The paper also presents the
results of a large scale empirical study that plays two roles:
it validates the predictions of the theory and it answers the
questions concerning the relative performance of ET against
local search, using Hill Climbing (HC), and Random Testing
(RT). The primary contributions of the paper are:

1. The introduction of a schema theory and Royal Road
theory for ET that predict the structural test data
generation problems to which ET will be well suited.

2. An empirical validation of the predictions of the theory
that provides evidence to support the claim that ET
does indeed perform well for Royal Road functions and
that this is due to the effect of the crossover operation.

3. An empirical assessment of the performance of ET
compared to HC and RT. This empirical study has
several findings, some of which are surprising:

(a) The results support the view that RT can find test
data for many cases, but leaves some hard–to–
cover branches for which more intelligent search
is required.

void all_zeros(int list[], int size) {
int total = 0, i;

(1) for (i=0; i < size; i++) {
(2) if (list[i] == 0) {
(3) total ++;

}
}

(4) if (total == size) {
(5) printf("All zeros \n");

}
}

Figure 1: The illustrative all zeros function for
demonstrating how ET works

False - TARGET MISSED

Approach level = 0

Branch distance = |list[i] – 0|

True

False - TARGET MISSED

Approach level = 1

Branch distance = size - i

True –

TARGET HIT

S

1

2

3

e

4

5

True

False

Figure 2: CFG for the all zeros function of Figure 1,
showing how the fitness is calculated for coverage of
the true branch from node 2

(b) Where test data generation scenarios do not have
a Royal Road property, HC performs far better
than ET. This is surprising, given the emphasis
on ET in the literature; perhaps there has been
an over-emphasis on ET at the expense of other
more simple search techniques.

(c) Though HC outperforms ET in non Royal Road
scenarios, there do exist Royal Road scenarios in
which ET is successful and HC and random search
fail. This indicates that for best overall perfor-
mance, a hybrid approach will be required.

The rest of the paper is organised as follows. Section 2
provides a detailed description of the ET and HC algorithms
used in the paper to facilitate replication. Section 3 intro-
duces the schema and Royal Road theory for ET, while Sec-
tion 4 presents the results of the empirical study that both
validates the theory and addresses performance questions.
Section 5 presents related work, while Section 6 concludes.

2. SEARCHBASED TESTING
Search-based test data generation searches a test object’s

input domain to automatically find test data, guided by a
fitness function. This paper concentrates on structural test
data generation, which is the most widely studied of all the
applications of search-based techniques to the test data gen-
eration problem. The paper considers branch coverage, a
widely used structural test adequacy criterion. However, the
results can be extended to apply to other forms of structural
test data generation.

For branch coverage, a separate search is conducted to
find test data to cover each uncovered branch. The fitness

function, to be minimized, combines a measure known as
the approach level with the branch distance. The approach
level is a measure of how close a candidate test input was to
executing the desired branch. It is a count of how many of
the branch’s control dependent nodes were not encountered
in the path executed by the input. Suppose the target is
the true branch from node 2 in Figure 1. The control flow
graph is presented with fitness computation information in
Figure 2. If size <= 0, node 2 is not encountered and the
approach level is 1. However, if the loop body is executed,
node 2 will be encountered and the approach level is 0.

The branch distance is computed using the values of vari-
ables at the predicate appearing in the conditional where
control flow went ‘wrong’ - i.e., where the path diverged
away from the target branch. It reflects how close the pred-
icate came to switching outcome, causing control to pass
down the desired alternative branch. For example, if the
false branch were taken from node 2 of the program in Fig-
ure 1, the branch distance is computed using the formula
|list[i] - 0|. The closer the values of list[i] and 0,
the ‘nearer’ the conditional is deemed to being true. If the
conditional is encountered several times in the body of the
loop, the smallest branch distance is used. The complete
fitness value is traditionally computed by normalizing the
branch distance and adding it to the approach level [25].

The next two subsections describe the implementation of
ET and HC in detail to facilitate replication.

2.1 Genetic Algorithms (GA) and
Evolutionary Testing (ET)

Genetic algorithms (GAs) belong to the family of evolu-
tionary algorithms, which work to evolve superior candidate
solutions (known as ‘individuals’, denoted by chromosomes)
using mechanisms inspired by the processes of natural Dar-
winian evolution. The search simultaneously evolves sev-
eral individuals in a population, creating a global search.
It is this application of evolutionary algorithms to search-
based testing that has become known as Evolutionary Test-
ing (ET). The chromosome making up each individual is
a direct representation of the input vector to the program
concerned. The all zeros program in Figure 1, for exam-
ple, would have the chromosome <list[0] , . . . , list[4],

size>, where the array size of list is fixed at 5. The ‘genes’
of the chromosome represent the input values with which the
program will be executed.

The term ‘genetic algorithm’ is often reserved for the evo-
lutionary computation in which the chromosome represen-
tation is necessarily a bit string, while test data generation
requires chromosomes that must respect typing information
embodied in any valid input type [25]. Therefore, in this
paper the term ET is used in preference to the term GA.
As will be seen in the next section, the richer chromosome
types required by ET entail a generalization of Holland’s
GA schema theory in order to render it applicable to ET.

A distinguishing feature of both GAs and ET is the impor-
tance of the crossover (or recombination) operation, which
loosely models the exchange of genetic information that takes
place during reproduction in the natural world. A series of
‘crossover points’ are used to decide where two parent chro-
mosomes are to be spliced in order to form the composite
chromosomes of two children. As with all evolutionary com-
putation, the hope is that the children will combine the best
features of both parents to create super-fit children from fit

parents. Where this fails to take place, selection pressure
ensures that less fit children tend to die out. The example
below shows two (parent) input vectors to the all zeros

program being subjected to the crossover operation at posi-
tion 3 to produce two children (offspring).

Parents Offspring

l
i
s
t
[
0
]

l
i
s
t
[
1
]

l
i
s
t
[
2
]

l
i
s
t
[
3
]

l
i
s
t
[
4
]

s
i
z
e

l
i
s
t
[
0
]

l
i
s
t
[
1
]

l
i
s
t
[
2
]

l
i
s
t
[
3
]

l
i
s
t
[
4
]

s
i
z
e

0 0 0 20 20 4
→

0 0 0 0 0 5
20 20 20 0 0 5 20 20 20 20 20 4

The rest of this section presents the details of the algo-
rithm implemented for ET used in this paper. The approach
is based on a careful replication of the DaimlerChrysler sys-
tem for ET, which has been widely studied in the literature
[4, 5, 25]. The DaimlerChrysler system has been developed
and improved over a period of over a decade and so it can be
argued to be the ‘state of the art’ in ET. The aim of using
this ET approach is to ensure that the results for ET do,
indeed, represent the state of the art. This lends additional
weight to any findings that reveal superior performance by
the comparatively straightforward HC approach, to which
ET is compared. As will be seen (in Section 4), the empiri-
cal study does indeed yield such results.

The population is divided into six subpopulations, max-
imizing the effect of the mutation operator, the range of
which depends on the subpopulation. Subpopulation 1 em-
ploys a relatively large range of possible mutations, whilst
subpopulation 6 chooses values from a small range. Sub-
populations compete for a share of the number of individ-
uals that they can evolve, and so the search concentrates
resources where the most progress is being made.

The main loop evolves subsequent ‘generations’ of the
population with the aim of generating fitter input vectors.
The stages of each generation are described below, com-
prising selection of individuals for crossover and mutation,
and reinsertion of individuals into the population for the
next generation. At selected generations, sub-populations
exchange individuals (migration), and compete for resources
(competition). The search continues until a test case has
been found, or resources have been exhausted.

Selection. Selection is the process of choosing parents for
crossover. A selection strategy is generally biased towards
the best individuals. However, weaker individuals retain
a small selection probability, thereby maintaining diversity
and avoiding premature sub-optimal convergence. Stochas-
tic universal sampling [2] is used; the probability of an in-
dividual being selected for reproduction is proportionate to
its fitness. Ranked fitness values are used to promote di-
versity. Ranked values depend on the individual’s position,
sorted by fitness. Using linear ranking [27], fitness values
are assigned in such a way that the best individual receives
a value Z, the median individual receives a value of 1.0, and
the worst individual receives a value of 2 − Z, where Z is a
parameter in the range [1.0, 2.0]. The value of Z used is 1.7.

Crossover. Parents are taken two at a time for crossover.
Discrete recombination [20] is used to generate offspring.
Discrete recombination is similar to uniform crossover; every
position in the chromosome is a potential crossover point.
However, unlike uniform crossover, a gene can be copied into
one or both children with an even probability.

Mutation. The breeder genetic algorithm [20] mutation
operation is used. An input variable xi is mutated at a
probability of pm = 1/len, where len is the length of the
input vector. Each subpopulation p (1 ≤ p ≤ 6) has a
different mutation step size, stepp = 10−p, which is used
in combination with the variable’s domain size domaini to
define the mutation range to be domaini · stepp. The new
value zi is computed using: zi = xi ±rangei ·δ. Addition or
subtraction is decided with an even probability. The value
of δ is defined to be

P15
x=0 αx · 2−x, where each αx is 1 with

a probability of 1/16 else 0. On average, therefore, one αx

will have a value of 1. If the mutated value falls outside the
bounds of the variable, its value is reset to its lower or upper
limit.

Reinsertion, Migration and Competition. The next
generation is constructed using an elitist reinsertion strat-
egy. The best 10% of the current generation is retained,
with the remaining places filled with the best 90% of the
new offspring. Every 20 generations, 10% of the individu-
als of each subpopulation are randomly selected to migrate
to another randomly selected subpopulation, such that no
subpopulation receives individuals from more than one other
subpopulation.

The competition algorithm ensures that the transfer of
resources between subpopulations is not subject to rapid
fluctuation. A progress value is computed for each subpop-
ulation at the end of each generation. The average fitness
is then found for each subpopulation, using linearly ranked
fitness values for each individual. The subpopulations are
then themselves linearly ranked (again using Z = 1.7). The
progress value, progressg, of a subpopulation at generation
g is 0.9 · progressg−1 + 0.1 · rank. Every four generations,
a slice of individuals is computed for each subpopulation
in proportion to its progress value. Subpopulations with a
decreased share lose individuals to subpopulations with an
increased allocation. However, subpopulations are not al-
lowed to lose their last five individuals, ensuring they can
never completely die out.

2.2 Hill Climbing (HC)
Hill climbing (HC) is a comparatively simple local search

algorithm that works to improve a single candidate solu-
tion, starting from a randomly selected starting point. From
the current position, the neighbouring search space is eval-
uated. If a fitter candidate solution is found, the search
moves to that point. If no better solution is found in the
neighbourhood, the algorithm terminates. The method has
been called ‘hill climbing’, because the process is likened to
the climbing of hills on the surface of the fitness function.
Since the fitness is to be minimized in this case, the equiv-
alent term ‘gradient descent’ is potentially less confusing.
For example, the coverage of the true branch from node 2,
of Figure 1, is represented by the valley touching zero on
the z axis of the fitness function surface (see Figure 3 for a
visualization).

As with ET, there are many choices in the formulation of
an HC algorithm. The approach used in this paper is the
‘alternating variable method’, which was used by Korel in
early papers in the search-based test data generation liter-
ature [12], hereinafter referred to simply as ‘HC’. HC takes
each input variable in turn and adjusts its value in isolation
from the rest of the vector. If altering the variable does not
result in better fitness, the next input variable is targeted,

−200

0

200

−200

0

200

0

0.5

1

1.5

list[0]
size

fi
tn

e
s
s

Figure 3: Fitness landscape (for two inputs) for the
coverage of the true branch at node 2 in Figure 1

and so on, until no modification of input values results in
an improved fitness.

Initially, an input vector is generated at random. The
first input value is selected, and its neighbourhood probed.
Suppose the input vector << 50, 100, 20, 50, 30 >, 5 > was
generated whilst attempting coverage of the true branch
from node 2 in the all zeros program from Figure 1. The
first value of the list array is probed through ‘exploratory’
moves. A small decrease of the variable is tested, followed
by a small increase. As list is an array of integers with the
first value stored being 50, the values ‘probed’ in this way,
are 49 and 51.

Recall how the fitness calculation works; the branch dis-
tance is the smallest distance encountered at node 2. The
third element of list is 20, and the closest to 0. Therefore
modifying list[0] has no effect on fitness. Similarly, ad-
justing the next element, list[1], results in no change. The
search then selects list[2], for which a decreased value -
19 - does have an effect, reducing the branch distance. Once
a better fitness has been found, further ‘pattern’ moves are
made in the direction of improvement.

In this paper, the value of the ith move mi made in the
direction of improvement, dir ∈ {−1, 1} is computed using
mi = si · 10−precv · dir, where precv is the precision of the
vth variable, and s is the repeat base (s = 2 for experiments
in this paper). Successive values of list[2] therefore are
19 (the initial move), 17, 13, 5, and -11. At -11, the fitness
becomes worse, and so this move is ignored. The search con-
tinues to re-establish a new direction through exploratory
moves in order to make further pattern moves. Eventually
the value of zero is found for list[2].

A well-known problem with local search methods like HC
is their tendency to become trapped in a local minima. For
example, recall the all zeros function from Figure 1 and
assume size is fixed; its values may not be probed using
the alternating variable method. The relationship between
inputs and values for node 4’s predicate is not as simple and
direct as that for node 2. For the most part, exploratory
moves for values of list have no effect on total, resulting
in areas of undistinguished fitness (See Figure 4 for a visu-
alization). On encountering one of these ‘fitness invariant
plateaux’, HC terminates without finding the required test
data. In order to address this problem, HC is restarted at a
new randomly chosen start point many times, until a budget
of fitness evaluations has been exhausted.

−100

0

100 −100

0

100
0

1

2

3

x 10
−3

list[1]
list[0]

fi
tn

e
s
s

Figure 4: Fitness landscape (for two inputs) for the
coverage of the true branch from node 4 of Figure 1

3. THEORETICAL FOUNDATIONS
This section presents an overview of the schema and Royal

Road theories and introduces a generalization of both that
caters for ET.

3.1 The Schema Theory of Genetic Algorithms
In a binary GA, a schema is a sequence consisting of three

possible values, drawn from the set {0, 1, ∗}. The asterisk, ∗,
is a wildcard, indicating that either a zero or a one could oc-
cur at this position. Thus, for a chromosome of length four,
a schema 10∗1 denotes the two chromosomes 1011 and 1001,
while the schema ∗∗∗∗ denotes all possible chromosomes. A
schema can be thought of as a template chromosome that
stands for a whole set of individual chromosomes, each of
which share some common fixed values. An instantiation
of a schema is any chromosome that matches the template,
when ∗ values are replaced by the corresponding fixed values
of the instantiation. If a chromosome x is an instantiation
of a schema h, this is denoted x ∈ h.

The number of fixed positions in a schema is called the
order of the schema. The schema 1∗∗1 has order two, while
10∗1 has order three. For a schema, h, the order will be
denoted o(h). Suppose that the length of a chromosome is

denoted by λ. A schema, h, denotes 2λ−o(h) chromosome
instantiations, all of which have their own individual fitness
values.

In a particular generation of a GA, g, the population will
be a set of chromosomes, denoted P (g). The GA will not be
able to determine the true fitness of a schema h, because it
will not necessarily contain all possible instantiations. How-
ever, the schema processing at each generation g, will be
able to approximate the fitness of h, based on the instantia-
tions of h present in the population P (g). For this reason it
is useful to define a measure of approximate fitness, f(h, K)
for a set of chromosomes K.

f(h, K) =
1

| {x | x ∈ h ∧ x ∈ K} |

X

x∈h∧x∈K

f(x)

For a generation g, f(h, P (g)) is the approximate value
of the fitness of h based upon the current members of the
population at generation g.

The distance between the outermost fixed positions in a
schema is known as the defining length. The defining length
of a schema h, will be denoted δ(h). As the GA executes, it

evaluates the fitness of the chromosomes in each generation.
Every time an individual is evaluated, 2λ schemata are eval-
uated and so the GA processes a large number of schemata,
far larger than the number of individual chromosomes that
it evaluates. This observation can be made more formal, by
considering the number of instances of a schema that per-
tain at each generation of the GA. Without the presence of
mutation and crossover, but merely with selection, the num-
ber of occurrences of a schema h at generation g + 1 can be
bounded below in terms of the number of occurrences of h
at generation g. Let the number of occurrences of h at gen-
eration g be denoted N(h, g). The schema theory (without
mutation and crossover), for a population of size M is:

N(h, g + 1) ≥ N(h, g)
f(h, P (g))

1
M

P

x∈P (g) f(x)

Both mutation and crossover disrupt schemata in a pop-
ulation. To take account of mutation and crossover, the
schema theory is extended to take account of the mutation
probability (pm, the probability that an individual bit is
mutated) and the crossover probability (pc).

N(h, g+1) ≥ N(h, g)
f(h, P (g))

1
M

P

x∈P (g) f(x)
(1−pc

δ(h)

λ − 1
−pm o(h))

It is this equation that is known as the schema ‘theorem’
of genetic algorithms, due to Holland [11]. It makes the im-
plicit assumption that crossover is a single point crossover
operation and that mutation is achieved by flipping a single,
randomly chosen, bit of the chromosome. Holland’s schema
theory is a ‘worst case’ formulation, because it places a lower
bound on the number of schemata present at each generation
of the evolution of the GA. It also indicates that crossover
can disrupt the schemata. This may seem counter-intuitive,
because it is from the crossover operator that GAs are in-
tended to derive much of their capability [19]. Fortunately,
this issue is addressed by the Royal Road theory of GAs,
which clarifies the important role of crossover.

3.2 Schema Theory for Test Data Generation
by Genetic Algorithms

ET typically does not use binary GAs, so the schema the-
ory is not directly applicable. A new form of schema theory
for ET therefore has to be constructed. Fortunately, the in-
put vectors used in ET can be captured by a generalization
of Holland’s schema theory. These ET schemata arise from
the constraints on the input that a branch-covering solution
must satisfy. The constraints can be defined naturally in
terms of the computation of fitness for the approach level
and branch distance computation. For example, suppose a
program has three inputs, x, y and z and that in order to
execute the branch under test B, the program must first fol-
low a branch B1, for which the condition x > y must hold,
and must then follow a branch B2, for which the condition
y = z must hold.

In this example, a chromosome is a triple; three genes,
one each for the input values of x, y and z. A schema is a
constraint, denoting all instantiations of input vectors that
satisfy the constraint. For example, two possible schemata
{(x, y, z) | x > y} and {(x, y, z) | x = y}. Of these two
schemata, the first has higher fitness than the second for
branch B, because all instantiations of the first have a higher

fitness than all instantiations of the second due to their su-
perior fitness for the ‘approach level’. Observe that this
formulation of schemata is simply a generalization of the
traditional schemata, because traditional schema can always
be denoted by a corresponding constraint-schema. For ex-
ample, Holland’s traditional schema 1∗01 can be denoted by
{(a, b, c, d) | a = 1 ∧ c = 0 ∧ d = 1}.

For ET, a schema is thus denoted by a constraint c, whose
fitness is the average fitness of all instantiations that satisfy
the constraint. To distinguish traditional schemata from
those defined by a constraint, the latter shall be referred to
as constraint-schemata. The fitness of a constraint-schema
c is:

f(c) =
1

| {y | c(y)} |

X

x∈{y|c(y)}

f(x)

and the approximate fitness of a constraint-schema f(c, K)
for a set of chromosomes K, is:

f(c, K) =
1

| {x | c(x) ∧ x ∈ K} |

X

c(x)∧x∈K

f(x)

The basic form of the schema theory (without mutation
and crossover), for ET with respect to a constraint-schema
c of a population of size M can now be defined in the same
way as that for traditional schemata. That is:

N(c, g + 1) ≥ N(c, g)
f(c, P (g))

1
M

P

x∈P (g) f(x)

The full form of the schema theory, taking account of
crossover and mutation, can also be formulated by defining
the order of a constraint-schema, o(c) to be the number
of input variables that participate in the definition of the
constraint. For example, the order of {(x, y, z) | x > y} is 2,
while the order of {(x, y, z) | x = y = z} is 3 and the order
of {(x, y, z) | x > 17} is 1.

ET uses discrete recombination, in which each gene of
each parent has an equal chance of being copied to the
offspring. An upper bound on the probability of discrete
recombination disrupting a constraint schema is thus the
product of the probability of crossover occurring (pc) and
the ratio of genes in the constraint schema to total genes.

In ET, mutation is typically applied to a single gene through
the addition of randomly chosen values. An upper bound
on the probability that this form of mutation will disrupt a
constraint-schema is simply the product of the probability
of a gene mutation and the order of the constraint schema.
With these two observations, it is possible to formally define
the schema theory for constraint-schemata as follows:

N(c, g+1) ≥ N(c, g)
f(c, P (g))

1
M

P

x∈P (g) f(x)
(1−pc

o(c)

λ
−pm o(h))

However, as with the traditional schema theory, this schema
theory of ET also indicates that mutation and crossover dis-
rupt constraint schemata and so it is necessary to consider
the Royal Road theory, which explains the form of search
problems for which the crossover will be most likely to suc-
ceed.

s1 : 11111111**

s2 : ********11111111**

s3 : ****************11111111**

s4 : ************************11111111********************************

s5 : ********************************11111111************************

s6 : **11111111****************

s7 : **11111111********

s8 : **11111111

s9 : 1111111111111111**

s10 : ****************1111111111111111********************************

s11 : ********************************1111111111111111****************

s12 : **1111111111111111

s13 : 11111111111111111111111111111111********************************

s14 : ********************************11111111111111111111111111111111

s15 : 11

Figure 5: Royal Road Function of Mitchell et al.

3.3 The Genetic Algorithm Royal Road
Mitchell, Forrest and Holland [19] introduced the theo-

retical study of Royal Road landscapes in order to capture
formally the intuition underlying the ‘folk theorem’ that GA
will outperform a local search such as HC, because of the
way in which GA uses the crossover operation to combine
building blocks. Building blocks are fit schemata that can
be combined together to make even fitter schemata.

It is widely believed that the combination of building
blocks through crossover (recombination of genetic mate-
rial) is the primary underlying mechanism through which
evolutionary progress is achieved. This applies both in the
world of evolution by natural selection and through the ge-
netic algorithm’s artificial mimicry of this natural process.
The Royal Road theory of genetic algorithm aims to explain
how this process works. In so doing, it captures a set of
fitness functions (the so–called Royal Road functions) for
which a genetic algorithm is well suited and for which it is
theoretically predicted to equal or outperform other search
techniques, such as local search.

The Royal Road theory addresses the perplexing aspect
of the schema theory; the way in which it indicates that
crossover could be viewed as a harmful operation that dis-
rupts fit schema.

Mitchell et al. defined an example fitness function in
terms of a set of schemata {s1, . . . , s15} as follows:

F (x) =
X

s∈S

csσs(x)

Where F (x) is the fitness of a bit string x, cs is the order
of the schema s, and σs(x) is one if x is an instantiation
of s, and zero otherwise. The schemata {s1, . . . , s15} are
defined in Figure 5. Notice how the Royal Road example is
constructed so that lower fitness schemata can be combined
to yield higher fitness schemata. Such a landscape is ‘tailor
made’ to suit a genetic algorithm; crossover allows the GA
to follow a tree of schemata that lead directly to the global
optimum. This tree of ever fitter schemata form the ‘Royal
Road’.

3.4 Royal Road for Evolutionary Test Data
Generation

For a schema concerned with constraints, the order of the
schema is the number of variables that are mentioned in the
constraint. In order for lower order schemata to be combined
with higher order schemata, as with the binary GA model,
the higher order schemata must contain the union of the
genes of the lower order schemata. Also, to avoid destroying
the properties of a lower order schema, there must be no

intersection of genes in the lower order schemata, otherwise
the genes of one would overwrite those of the other when
combined. This is also the case with the Royal Road theory
of Mitchell et al.

However, since the genes in the chromosomes for ET are
input variables and the schemata denote constraints on these
variables, there is an additional property that can be seen to
hold for ET Royal Road functions. The higher order and fit-
ter schema will respect both the constraints respected by the
lower order schemata (since it will contain the same values
for genes of each of the lower order schemata). Therefore,
the constraint of the higher order schemata must respect a
conjunction of the constraints of the lower order schemata.
That is, if two constraint schema c1 and c2 are combined to
produce a fitter schema C then C ⇒ c1 ∧ c2.

This observation indicates that there must exist a tree
of logical implications along any Royal Road of constraint
schemata for ET. Since the constraint schema theory is merely
a generalization of the standard Holland schema theory, it
can also be shown that (trivially) such a tree of constraints
also holds for the Royal Road of Mitchell et al. For ex-
ample, the constraint that denotes the Mitchell schema s1

is ∀i.1 ≤ i ≤ 8.s1(i) = 1, while the constraint denoted by
Mitchell’s s2 is ∀i.9 ≤ i ≤ 16.s1(i) = 1. Clearly the con-
junction of these two constraints yields the constraint for
Mitchell’s s9, namely, ∀i.1 ≤ i ≤ 16.s1(i) = 1.

The implication is that for an ET approach to exhibit a
Royal Road property, the more fit schemata must be ex-
pressed as conjunctions of lower order schemata involving
disjoint sets of input variables. Where this property holds,
the ET Royal Road theory predicts that ET will perform
well and that it will do so because of the presence of the
crossover operation and the way in which fitter schemata
are given exponentially more trails than less fit schema.

The archetype of this Royal Road property is a predicate,
the outcome of which is determined by a set of values S.
Such a predicate will have a Royal Road fitness function
if it tests for the presence of properties exhibited by non–
intersecting subsets of S. This situation arises, for example,
in string processing, where substrings are tested for the pres-
ence of certain properties of interest and in numeric array
processing, where the program aims to establish whether
subsets of the array are related in certain ways.

4. EMPIRICAL STUDY
An empirical study was conducted on almost 4,000 lines

of production C code, comprising 33 individual functions
and a total of 640 branches, with search space sizes ranging
from 107 to 10544. It represents the largest ET study to date.
The code analyzed was by no means trivial, containing many
examples of complex, unstructured control flow, unbounded
loops and computed storage locations in the form of pointers
and array access. Further details can be found in Table 1.

4.1 Research Questions
The empirical study addresses three research questions,

described below:

Research Question 1 - Validation of ET Theory. For
a predicate, the fitness function of which denotes a Royal
Road function, the theory predicts that the genetic algo-
rithm should perform well. Does it perform well and how
does it compare to a HC algorithm?

Table 1: Test object details

Test Object / Function L
in

e
s

o
f

o
f
C

o
d
e

N
u
m

b
e
r

o
f
B

ra
n
ch

e
s

A
p
p
ro

x
.

D
o
m

a
in

S
iz

e
(1

0
x
)

bibclean-2.08
check ISSN 42 120
check ISBN 42 120
Total 178
eurocheck-0.1.0
main 22 31
Total 70
gimp-2.2.4
gimp rgb to hsl int 14 7
gimp rgb to hsv 10 40
gimp hsv to rgb 16 40
gimp hsv to rgb int 16 7
gimp rgb to hsv int 14 7
gimp rgb to hsl 14 40
gimp rgb to hsv4 18 7
gimp hwb to rgb 18 30
gimp hsv to rgb4 16 30
gradient calc radial factor 6 21
gradient calc square factor 6 21
gradient calc conical sym factor 8 31
gradient calc conical asym factor 6 31
gradient calc bilinear factor 6 34
gradient calc spiral factor 8 37
gradient calc linear factor 8 31
Total 867
space
addscan 32 539
fixgramp 8 23
fixport 6 132
fixselem 8 132
fixsgrel 68 544
fixsgrid 22 104
gnodfind 4 70
seqrotrg 32 207
sgrpha2n 16 457
Total 2210
spice
cliparc 64 44
clip to circle 42 30
Total 269
tiff-3.8.2
TIFF SetSample 14 10
TIFF GetSourceSamples 18 15
PlaceImage 16 38
Total 182
Grand Total 3,776 640

Research Question 2 - Validation of crossover hy-
pothesis. According to the theory, the reason for ET’s good
performance on Royal Road functions should be due to the
effect of the crossover operator. Therefore, there is a sec-
ond ‘validation of theory’ question: How does ET perform
on Royal Road functions when the effects of the crossover
operator are removed?

Research Question 3 - Performance for non Royal
Road functions. For predicates that do not have a Royal
Road fitness function, the genetic algorithm may perform no
better, and possibly worse than HC. The theory is concerned
with effectiveness not efficiency and so it cannot make pre-
dictions about how ET will perform relative to HC and RT,

nor how badly its performance would be affected by the ab-
sence of Royal Roads. However, this remains an important
question and one that can be addressed empirically.

4.2 Test objects
The subjects used in the empirical study were six real

world programs for which summary data are presented in
Table 1. The rest of this section provides a brief overview
of these subject programs.
bibclean-2.08 is an open source program used to syn-

tax check and pretty-print BibTeX bibliography files. The
two functions tested are validity checks for ISBN and ISSN
codes used to identify publications. eurocheck-0.1.0 is
also an open source program. It contains a single function
used to validate serial numbers on European bank notes.
gimp-2.2.4 is the open source GNU image manipulation
program. Several library functions were tested, including
routines for conversion of different colour representations
(for example RGB to HSV) and the manipulation of draw-
able objects. space is a program from the European Space
Agency and is available from the Software-artifact Infras-
tructure Repository [1, 9]. Nine functions were tested. spice
is an open source general purpose analogue circuit simula-
tor. Two functions were tested, which were clipping routines
for the graphical front-end. tiff-3.8.2 is a library for ma-
nipulating images in the Tag Image File Format (TIFF).
Functions tested include image placing routines and func-
tions for building ‘overview’ compressed sample images.

Where the type signature of the function was straightfor-
ward, the numerical vectors generated by the search could
be used directly as input vectors. In other cases, the input
values had to be mapped into structure types. Linked lists
and arrays, where used, were fixed in length. The addscan

function of space is responsible for allocating memory, but
not deallocating it, leading to potential memory leaks in the
testing process. Therefore, the malloc function had to be
overridden to keep track of the pointers allocated so that
the test execution process could release the memory after-
wards. These modifications affect neither the size of the
search space nor the distribution of fitness values so they
have no impact upon the research questions.

The minimum and maximum values of the input variables
(along with their precision in the case of floating point num-
bers), were specified for the search process. From this infor-
mation, the input domain size - i.e. the search space size -
can be computed. This is recorded in Table 1. As can be
seen, the search space sizes can be extremely large, ranging
up to 10544; a number considerably larger than the number
of atoms in the observable universe (typically estimated at
1080).

4.3 Experiments
The test data generation experiments for branch coverage

used ET, HC and RT. Each search was terminated after
100,000 fitness evaluations if test data had not been found.
The ET and HC algorithms were described in the previous
section. The RT algorithm simply constructs 100,000 valid
random inputs. The test data search involving each search
method and each branch was repeated 30 times using an
identical list of 30 fixed seeds for random number generation.
In this way the experiments provide a basis for assessment
of the statistical significance of the results.

Figure 6 summarises the branches covered by the differ-

Covered by all

Uncovered or infeasible

Covered by random only

Covered by GA only

Covered by hill climbing only

Covered by GA and hill climbing

Figure 6: Pie chart showing proportions of branches
covered by the different search methods

ent search methods. Of the 640 branches, 532 branches
(83%) were covered by all search methods. This high de-
gree of coverage for simple–minded random testing tends to
support the view that it can be effective for easy–to–cover
branches, leaving relatively few hard–to–cover branches for
which more intelligent search is required. Of the 44 branches
not covered during all 30 random search runs, 41 were cov-
ered by either HC or ET, 10 of which were covered by ET
only and 5 by hill climbing only. A further 4 branches were
covered by random search only, but only in 3 or fewer of the
30 runs.

The final 63 branches were infeasible or simply uncovered
by the search techniques. In many instances, such as a large
proportion of branches from eurocheck-0.1.0, the fitness
function surface is flat, affording the search no guidance to
the required test data. Also, because the target–covering
test inputs occupy a tiny portion of the overall input domain,
RT also fails. Such ‘difficult’ fitness landscapes are studied
further elsewhere in the literature [3, 10, 16, 17].

Clearly there is no point in attempting to use an ‘intelli-
gent’ (and therefore more expensive) metaheuristic search,
when random testing will do. Therefore, in answering the
research questions, only those branches for which RT fails
(on all 30 attempts) are considered. The identification of
Royal Road functions was a test, necessarily performed by
hand for each predicate, because the decision as to whether a
particular predicate denotes a Royal Road is one determined
by a deep understanding of the semantics of the predicate in
question. If there were an automated decision procedure for
finding Royal Roads, then automated test data generation
would not be as hard as it is.

Answers to Research Questions

Research Question 1 - Validation of ET Theory. The
Royal Road property is found in branches of the bibclean

test object. The check ISSN and check ISBN (Figure 7)
functions both read a string of 30 characters. The func-
tion sequentially searches through the characters in order to
find those valid for an ISSN or ISBN number. When such a
character is found, a counter variable is incremented. When
this counter is equal to 8 (check ISSN) or 10 (check ISBN),
validation can take place. The constraint schemata for this
program form a Royal Road, where for example, the con-
straint ‘contains at least 3 valid characters’ subsumes the
constraints: ‘contains at least 2 valid characters’ and ‘con-
tains at least 1 valid character’.

...

for (..., checksum = 0, k = 0, n = 1; current_value[n+1]; ++n)

{

...

switch (current_value[n])

{

...

case ’0’: case ’1’: case ’2’: case ’3’: case ’4’: case ’5’:

case ’6’: case ’7’: case ’8’: case ’9’: case ’X’: case ’x’:

/* valid ISBN digit */

k++;

if (k < 10) /* Node 23 (branches 23T and 23F) */
{

ISBN[k] = current_value[n];

checksum += ISBN_DIGIT_VALUE(ISBN[k]) * k;

break;

}

else if (k == 10) /* Node 27 (branches 27T and 27F) */
{

ISBN[k] = current_value[n];

/* Node 29 (branches 29T and 29F) */
if ((checksum % 11) != ISBN_DIGIT_VALUE(ISBN[k]))

bad_ISBN(ISBN);

...

Figure 7: Code snippet from the check ISBN function

Table 2: Branches with Royal Road properties. Suc-
cess rate is the number of runs in which test data
was found by the search. AE is the average number
of fitness evaluations, SD is the standard deviation

Test Object GA Hill Climbing
(Branch ID) Success Rate Success Rate

(AE/SD) (AE/SD)

bibclean-2.08
check ISBN (23F) 97% (8,091/3,042) 0% (n/a)
check ISBN (27T) 97% (8,091/3,042) 0% (n/a)
check ISBN (29F) 97% (9,377/3,184) 0% (n/a)
check ISBN (29T) 97% (8,091/3,042) 0% (n/a)
check ISSN (23F) 100% (5,154/1,606) 0% (n/a)
check ISSN (27T) 100% (5,154/1,606) 0% (n/a)
check ISSN (29F) 100% (6,155/1,654) 0% (n/a)
check ISSN (29T) 100% (5,226/1,621) 0% (n/a)

There are 256 different character values, of which 12 are
valid, giving a 12/256 chance that a character will be valid.
Therefore, a string of 30 characters is likely to contain at
least one valid character. A template string with some valid
characters denotes a schema; the more valid characters, the
fitter the schema. According to the schema theory, these
schemata will receive ever more evaluations as the algorithm
progresses and, according to the Royal Road theory, their
recombination through crossover is likely to yield super-fit
offspring. Thus, the theory developed in Section 3 predicts
that ET will perform well for this example.

The empirical results (presented in Table 2) support this
predication. ET almost always succeeds in finding test data,
whilst HC always fails. By contrast, HC gets stuck along
plateaux appearing in the fitness landscape for branches de-
pending on code validation. If an invalid character, c is
generated, exploratory moves are unlikely to result in an
improvement in fitness, unless c happens to be adjacent to
a block of valid characters.

Research Question 2 - Validation of crossover hy-
pothesis. The recombination operator was disabled, and
the ET experiment was re-run for bibclean. Test data gen-
eration failed in every instance (Table 3). In order to rule

Table 3: Comparing discrete recombination with no
recombination for branches with Royal Road prop-
erties. AE is the average number of fitness evalua-
tions, SD is the standard deviation

Test Object Discrete None
Function Success Rate Success Rate
(Branch ID) (AE/SD) (AE/SD)

bibclean-2.08
check ISBN (23F) 97% (8,091/3,042) 0% (n/a)
check ISBN (27T) 97% (8,091/3,042) 0% (n/a)
check ISBN (29F) 97% (9,377/3,184) 0% (n/a)
check ISBN (29T) 97% (8,091/3,042) 0% (n/a)
check ISSN (23F) 100% (5,154/1,606) 0% (n/a)
check ISSN (27T) 100% (5,154/1,606) 0% (n/a)
check ISSN (29F) 100% (6,155/1,654) 0% (n/a)
check ISSN (29T) 100% (5,226/1,621) 0% (n/a)

out the possibility that recombination was not just adding
further ‘mutation’, and that true crossover was not really
having an effect, a third experiment was carried out. This
time, parents were recombined with a randomly generated
individual, rather than with another parent drawn from the
current population.

The outcome was as follows. For four branches, test data
could not be generated using the randomly generated second
parent, as seen in Table 4. For check ISSN branch 29F, test
data was generated on only a few occurrences. Test data
was generated for the remaining branches with reasonable
consistency, but with almost ten times as many fitness eval-
uations. Statistical significance was tested for using a t−test
with α level 0.01. In all comparable cases the test revealed
that the results were statistically significant. The p values
are listed in Table 4.

Research Question 3 - Performance for non Royal
Road functions. Table 5 shows branches not covered by
random search and which do not exhibit Royal Road prop-
erties. The finding is that HC significantly outperforms ET
in many of these cases. This is a surprising finding given
the high degree of attention paid to ET, compared to the
simpler HC approach.

As these results show, there are only 2 branches for which
ET is successful and for which HC fails. The first branch,
20T of the function PlaceImage in tiff-3.8.2 is covered
inconsistently (on only 3 occasions). The second branch,
12T of the function gimp hwb to rgb has a fitness landscape
containing a series of plateaux, making it hard for HC to
navigate. One specific value is required for one input vari-
able, which happens to be the top value of its range. It
is only covered by ET due to an artifact in the way the
mutation operator works. If a large value is added to the
variable, such that it goes out of range, the value is reset to
its maximal value. Thus the branch is covered.

There are 5 branches in spice that HC can cover that ET
cannot in the 100,000 fitness evaluations limit. Here it seems
that the fitness landscape must be navigated with extreme
precision, as it appears that the test data lies in narrow
sub-regions of the search space with exceptionally steep in-
clines. These results provide some evidence that there are at
least some examples where the simple HC approach is more
successful that the more sophisticated (and expensive) ET
approach.

The greater expense of the ET approach is also clearly
revealed by the remaining cases (for which both ET and

HC achieve coverage of the target branch). For these 19
branches, HC is usually more efficient by an order of a mag-
nitude. The results of t−tests show that HC is significantly
better than ET for all comparable results sets at the α level
0.01.

For a further 10 branches, HC has a higher success rate
than ET. For all of these branches, the fitness landscapes
involved appear to be smooth, and largely free from plateaux
and ‘ruggedness’ which hinder the HC algorithm.

5. RELATED WORK
Miller and Spooner [18] were the first authors to dynami-

cally generate test data, defining an objective function to be
optimized using numerical maximization techniques. Korel
[12] was the first to use the strategy described as hill climb-
ing in this paper. Xanthakis et al. [28] were the first to
apply evolutionary computation to test data generation for
the execution of paths. This work has been extended by
various authors [14, 21, 23, 25] for branch coverage. In 2004
there was a sufficiently large body of work in search-based
testing to warrant a detailed survey of the field [15]. How-
ever, despite this large volume of work, this is the first paper
to provide a theoretical explanation of why and where evo-
lutionary approaches work. This paper also contains the
largest empirical study conducted to date comparing the
performance of ET, HC and RT, when applied to real world
code.

Many empirical studies in the literature compare ET with
RT alone [14, 21, 25], finding that ET achieves the highest
levels of coverage, and more efficiently. Though this finding
is important to validate the use of metaheuristic search for
test data generation, it is something of a ‘sanity check’; in
any optimization problem worthy of study, the chosen tech-
nique should be able to convincingly outperform random
search.

There have also been several studies comparing ET, HC,
RT and simulated annealing for a variety of criteria. How-
ever, these studies tend to report results on small numbers of
programs, each with limited complexity. For instance, Wang
and Jeng [24] compare ET with HC and memetic algorithms
for branch coverage on six examples. Memetic algorithms
are found to outperform HC, which in turn outperforms ET.
However, only a small number of branches are investigated,
and none of these contain Royal Road properties. Mansour
and Salame [13] compare ET, HC and simulated annealing
for test data generation for path coverage, finding that HC
discovers test data faster than ET and simulated annealing,
but that ET and simulated annealing can cover more paths.
They also report that simulated annealing performs better
than ET. However, HC is only applied to programs with
integer inputs and the study is performed on eight func-
tions of fewer than 86 lines of code. Finally, Xiao et al. [29]
compare ET with simulated annealing for condition-decision
coverage, finding that ET is consistently the best performer.
However, once again, the study is small scale, featuring test
objects of limited complexity.

The present paper is the first to combine theoretical anal-
ysis grounded in theory (generalized from the literature of
evolutionary computation [22]) with a large scale empiri-
cal study that both validates the predictions of the theory
and provides an empirical assessment of the performance
implications for choice of search-based test data generation
technique.

Table 4: Comparing discrete recombination using normal parents with discrete recombination using a ran-
domly generated second parent, which is not a member of the current population. AE is the average number
of fitness evaluations, SD is the standard deviation

Test Object / Normal Parents Random 2nd Parent Observerd
Function Success Rate Success Rate Significance
(Branch ID) (AE/SD) (AE/SD) Level (p−value)

bibclean-2.08
check ISBN (23F) 97% (8,091/3,042) 0% (n/a) n/a
check ISBN (27T) 97% (8,091/3,042) 0% (n/a) n/a
check ISBN (29F) 97% (9,377/3,184) 0% (n/a) n/a
check ISBN (29T) 97% (8,091/3,042) 0% (n/a) n/a
check ISSN (23F) 100% (5,154/1,606) 77% (73,766/19,489) 10−15

check ISSN (27T) 100% (5,154/1,606) 77% (73,766/19,489) 10−15

check ISSN (29F) 100% (6,155/1,654) 7% (67,941/22,383) n/a
check ISSN (29T) 100% (5,226/1,621) 77% (73,766/19,489) 10−15

Table 5: Branches not exhibiting Royal Road properties. AE is the average number of fitness evaluations,
SD is the standard deviation

Test Object / GA Hill Climbing Observed
Function Success Rate Success Rate Significance
(Branch ID) (AE/SD) (AE/SD) Level (p−value)

gimp-2.2.4
gimp hwb to rgb (12T) 100% (1,299/658) 0% (n/a) n/a
gimp hwb to rgb (3T) 100% (10,798/2,428) 100% (126/28) 0.0
gimp rgb to hsl (4T) 100% (11,336/1,343) 100% (153/31) 0.0
gimp rgb to hsv (5F) 100% (7,696/1,300) 100% (142/33) 0.0
gimp rgb to hsv4 (11F) 100% (4,767/1,269) 100% (963/1,126) 10−12

gimp rgb to hsv int (10T) 100% (4,767/1,269) 100% (963/1,126) 10−12

gradient calc bilinear factor (8T) 100% (13,509/3,086) 100% (195/35) 0.0
gradient calc conical asym factor (3F) 100% (21,189/4,403) 100% (246/32) 0.0
gradient calc conical sym factor (3F) 100% (21,189/4,403) 100% (246/32) 0.0
gradient calc spiral factor (3F) 100% (21,387/4,292) 100% (246/32) 0.0
space
seqrotrg (17T) 37% (73,127/16,953) 100% (24,769/21,260) n/a
seqrotrg (22T) 37% (73,127/16,953) 100% (24,769/21,260) n/a

seqrotrg (27F) 83% (38,602/25,633) 100% (2,543/3,072) 10−7

spice
clip to circle (1F) 100% (11,615/3,188) 100% (105/16) 0.0
clip to circle (36T) 7% (26,390/23,139) 57% (36,456/26,978) n/a
clip to circle (49T) 0% (n/a) 37% (52,003/33,643) n/a
clip to circle (4F) 100% (11,687/3,079) 100% (135/23) 0.0
clip to circle (62T) 0% (n/a) 43% (37,992/29,778) n/a
clip to circle (68F) 0% (n/a) 77% (43,501/29,176) n/a
cliparc (13F) 100% (10,356/2,822) 100% (569/475) 0.0
cliparc (15F) 100% (11,050/2,667) 100% (767/754) 0.0

cliparc (15T) 100% (11,454/4,126) 100% (1,108/856) 10−14

cliparc (22T) 0% (n/a) 10% (53,281/38,259) n/a
cliparc (24T) 3% (35,448/0) 97% (5,502/9,508) n/a
cliparc (63F) 0% (n/a) 100% (21,168/19,916) n/a
tiff-3.8.2
PlaceImage (16T) 33% (8,816/1,813) 13% (71,660/20,390) n/a
PlaceImage (20T) 10% (28,249/34,400) 0% (n/a) n/a
TIFF GetSourceSamples (7T) 100% (11,669/3,097) 100% (85/39) 0.0
TIFF GetSourceSamples (9T) 100% (11,083/3,460) 100% (76/29) 0.0
TIFF SetSample (11T) 100% (8,398/2,439) 100% (60/12) 0.0
TIFF SetSample (5T) 100% (8,740/2,055) 100% (80/40) 0.0
TIFF SetSample (7T) 100% (8,463/2,074) 100% (62/13) 0.0
TIFF SetSample (9T) 100% (8,030/2,343) 100% (63/16) 0.0

6. CONCLUSIONS AND FUTURE WORK
This paper provides the large body of existing work on

search-based testing with a theoretical underpinning, con-
structed as a generalization of the theories of schemata and
Royal Roads from the literature of evolutionary computa-
tion. The theory is used to predict the situations in which
ET will perform well and to explain why. These predictions
are validated by empirical observation. The empirical study
then goes on to explore the impact of the choice of search
technique providing some important and perhaps counter-
intuitive findings. The findings of the study are surprising
because they indicate that sophisticated search techniques,

such as ET can often be outperformed by far simpler search
techniques. However, as the theory indicates, the findings
also show that there do exist test data generation scenarios
for which the evolutionary approach is ideally suited.

Acknowledgments. Mark Harman is supported by EP-
SRC Grants EP/D050863, GR/S93684 & GR/T22872, by
EU grant IST-33472 (EvoTest) and also by the kind support
of DaimlerChrysler Berlin and Vizuri Ltd., London. The au-
thors are also grateful to Kathy Harman, Kiran Lakhotia,
Afshin Mansouri, Rebecca McMinn and Xin Yao for their
comments on earlier versions of this paper.

7. REFERENCES
[1] The Software-artifact Infrastructure Repository,

http://sir.unl.edu/portal/index.html.

[2] J. E. Baker. Reducing bias and inefficiency in the
selection algorithm. In Proceedings of the 2nd
International Conference on Genetic Algorithms and
their Application, Hillsdale, New Jersey, USA, 1987.
Lawrence Erlbaum Associates.

[3] A. Baresel, D. Binkley, M. Harman, and B. Korel.
Evolutionary testing in the presence of loop-assigned
flags: A testability transformation approach. In
Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA 2004), pages
43–52, Boston, Massachusetts, USA, 2004. ACM.

[4] A. Baresel and H. Sthamer. Evolutionary testing of
flag conditions. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO
2003), volume 2724 of LNCS, pages 2442–2454,
Chicago, 12-16 July 2003. Springer-Verlag.

[5] A. Baresel, H. Sthamer, and M. Schmidt. Fitness
function design to improve evolutionary structural
testing. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO
2002), pages 1329–1336, San Francisco, CA 94104,
USA, 9-13 July 2002. Morgan Kaufmann Publishers.

[6] L. Bottaci. Instrumenting programs with flag variables
for test data search by genetic algorithms. In
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2002), pages
1337–1342, New York, 9-13 July 2002. Morgan
Kaufmann Publishers.

[7] L. C. Briand, Y. Labiche, and M. Shousha. Stress
testing real-time systems with genetic algorithms. In
Proccedings of the Genetic and Evolutionary
Computation Conference (GECCO 2005), Washington
DC, USA, June 25-29, 2005, pages 1021–1028. ACM,
2005.

[8] K. Derderian, R. Hierons, M. Harman, and Q. Guo.
Automated Unique Input Output sequence generation
for conformance testing of FSMs. The Computer
Journal, 49(3):331–344, 2006.

[9] H. Do, S. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical
Software Engineering, 10(4):405 – 435, Oct. 2005.

[10] M. Harman, L. Hu, R. Hierons, J. Wegener,
H. Sthamer, A. Baresel, and M. Roper. Testability
transformation. IEEE Transactions on Software
Engineering, 30(1):3–16, 2004.

[11] J. H. Holland. Adaption in Natural and Artificial
Systems. MIT Press, Ann Arbor, 1975.

[12] B. Korel. Automated software test data generation.
IEEE Transactions on Software Engineering,
16(8):870–879, 1990.

[13] N. Mansour and M. Salame. Data generation for path
testing. Software Quality Journal, 12(2):121–134, 2004.

[14] G. McGraw, C. Michael, and M. Schatz. Generating
software test data by evolution. IEEE Transactions on
Software Engineering, 27(12):1085–1110, 2001.

[15] P. McMinn. Search-based software test data
generation: A survey. Software Testing, Verification
and Reliability, 14(2):105–156, 2004.

[16] P. McMinn, M. Harman, D. Binkley, and P. Tonella.
The species per path approach to search-based test
data generation. In Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA
2006), pages 13–24, Portland, Maine, USA, 2006.
ACM.

[17] P. McMinn and M. Holcombe. Evolutionary testing
using an extended chaining approach. Evolutionary
Computation, 14:41–64, 2006.

[18] W. Miller and D. Spooner. Automatic generation of
floating-point test data. IEEE Transactions on
Software Engineering, 2(3):223–226, 1976.

[19] M. Mitchell, S. Forrest, and J. H. Holland. The royal
road for genetic algorithms: Fitness landscapes and
GA performance. In F. J. Varela and P. Bourgine,
editors, Proceedings of the First European Conference
on Artificial Life, pages 245–254, Cambridge, MA,
1992. MIT Press.

[20] H. Mühlenbein and D. Schlierkamp-Voosen. Predictive
models for the breeder genetic algorithm: I.
continuous parameter optimization. Evolutionary
Computation, 1(1):25–49, 1993.

[21] R. Pargas, M. Harrold, and R. Peck. Test-data
generation using genetic algorithms. Software Testing,
Verification and Reliability, 9(4):263–282, 1999.

[22] C. R. Reeves and J. E. Rowe. Genetic Algorithms -
Principles and Perspectives, A Guide to GA Theory.
Springer, 2002.

[23] N. Tracey, J. Clark, and K. Mander. Automated
program flaw finding using simulated annealing. In
International Symposium on Software Testing and
Analysis (ISSTA 98), pages 73–81, March 1998.

[24] H.-C. Wang and B. Jeng. Structural testing using
memetic algorithm. In Proceedings of the Second
Taiwan Conference on Software Engineering, Taipei,
Taiwan, 2006.

[25] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary
test environment for automatic structural testing.
Information and Software Technology, 43(14):841–854,
2001.

[26] J. Wegener, H. Sthamer, B. F. Jones, and D. E. Eyres.
Testing real-time systems using genetic algorithms.
Software Quality, 6:127–135, 1997.

[27] D. Whitley. The GENITOR algorithm and selection
pressure: Why rank-based allocation of reproductive
trials is best. In J. D. Schaffer, editor, Proceedings of
the 3rd International Conference on Genetic
Algorithms, pages 116–121, San Mateo, California,
USA, 1989. Morgan Kaufmann.

[28] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall,
S. Katsikas, and K. Karapoulios. Application of
genetic algorithms to software testing (Application des
algorithmes génétiques au test des logiciels). In 5th
International Conference on Software Engineering and
its Applications, pages 625–636, Toulouse, France,
1992.

[29] M. Xiao, M. El-Attar, M. Reformat, and J. Miller.
Empirical evaluation of optimization algorithms when
used in goal-oriented automated test data generation
techniques. Empirical Software Engineering, 2006 (to
appear).

