
EXPOSE: Inferring Worst-case Time Complexity by Automatic Empirical Study

Cody Kinneer H Gregory M. Kapfhammer H Chris Wright I Phil McMinn I

H Allegheny College I University of Sheffield

Introduction to doubling. A useful understanding of
an algorithm’s efficiency, the worst-case time complexity
gives an upper bound on how an increase in the size of the
input, denoted n, increases the execution time of the algo-
rithm, or f(n). This relationship is often expressed in the
“big-Oh” notation, where f(n) is O(g(n)) means that the
time increases by no more than on order of g(n). Since the
worst-case complexity of an algorithm is evident when n
is large [1], one approach for determining the big-Oh com-
plexity of an algorithm is to conduct a doubling experiment
with increasingly bigger input sizes. By measuring the time
needed to run the algorithm on inputs of size n and 2n, the
algorithm’s order of growth can be determined [1].

The goal of a doubling experiment is to draw a conclu-
sion regarding the efficiency of the algorithm from the ratio
f(2n)/f(n) that represents the factor of change in runtime
from inputs of size n and 2n. For instance, a ratio of 2
would indicate that doubling the input size resulted in the
runtime’s doubling, leading to the conclusion that the algo-
rithm under study is O(n) or O(n log n). Table 1 shows
some common time complexities and corresponding ratios.

Ratio f(2n)/f(n) Worst-Case Conclusion
1 constant or logarithmic
2 linear or linearithmic
4 quadratic
8 cubic

Table 1: Conclusions for worst-case time complexity.

Automatic doubling. EXPOSE [2, 3] is a tool to de-
rive an “EXPerimental bigOh” for supporting “Scalability
Evaluation”. EXPOSE infers an algorithm’s big-Oh order of
growth by conducting a doubling experiment automatically.
In order to evaluate an algorithm A, EXPOSE takes as input
two functions. The first is a timing function f(n) that runs
an implementation of A on the provided input of size n and
returns the runtime, and the second is a doubling function
d(n) that accepts an input for A and returns an input of size
2n. After providing EXPOSE an initial input, the tool will
output an inferred big-Oh order of growth for A.

EXPOSE derives the worst-case time complexity of A by
repeatedly doubling the input until n is large enough that
the worst-case time complexity of A is apparent. EXPOSE
determines when n is large enough by monitoring the dou-
bling ratio f(2n)

f(n) for multiple iterations of doubling. Using
a convergence algorithm, EXPOSE stops the doubling ex-
periment when the doubling ratio reaches a stable value.

To test for convergence, for every time t, where t de-
notes the number of times the input has been doubled, we
record the doubling ratio rt = f(2tn)

f(2t−1n) . The current ra-
tio rc is compared to a previous ratio rp where p is deter-
mined by a lookback value, such that p = c − lookback .
The result of the comparison is a difference value, given by
difference = |rc−rp|. This is then compared to a tolerance
value, and the experiment is judged to have converged when
difference < tolerance. The lookback and tolerance val-
ues are both configurable parameters.

Early use of the tool revealed that this converge check-
ing rule was not enough, since a very small initial n may
complete nearly instantaneously even for multiple rounds
of doubling. For example, the time that it takes to sort a
list of size 1, 2, 4, 8, . . . , 128 might not even be distinguish-
able. This would appear to converge to 1, which indicates
constant time complexity. To prevent the experiment from
incorrectly terminating given a small starting n, EXPOSE
requires that a program under study display a ratio of 1 for
a minimum number of times before judging that the ratio
does in fact converge to 1. That is, if rc = 1, t > minimum
must be true, in addition to the tolerance test, before the
experiment is declared convergent. The minimum value is
also a configurable parameter. Because a doubling ratio of 1
signifies constant or logarithmic time complexity, requiring
these doubles does not significantly increase the experimen-
tation time needed, all the while providing further assurance
that a small ratio is not due to an insufficiently small n.

Implementation. EXPOSE is implemented as a pack-
age of classes in the Java programming language [3]. To
use EXPOSE to evaluate a new algorithm A, you only need
to extend the DoublingExperiment class to provide your
own f and d functions. The f function should be imple-
mented by providing a double timedTest() method, and
d should be implemented by providing a void doubleN()
method. Note that these methods do not accept any param-
eters, and only timedTest() returns a value. The program-
mer must ensure that timedTest() returns the runtime for
the current input size, and that when doubleN() is called,
the input size is doubled; initializing and storing this in-
put should be handled by the user-provided implementation.
The runExperiment() method can be called to conduct a
doubling experiment and printBigOh() can be called to
show the result. Figure 1 shows an complete Java class that
conducts a doubling experiment on QuickSort; note the sim-
plicity of the implementation when using EXPOSE.

p u b l i c c l a s s QuickSor tExp ex tends Doub l ingExpe r imen t{
p r i v a t e i n t s i z e = 1 0 ;
p u b l i c s t a t i c vo id main (S t r i n g [] a r g s){

S o r t i n g E x p e r i m e n t exp = new S o r t i n g E x p e r i m e n t () ;
exp . r u n E x p e r i m e n t () ; exp . p r i n t B i g O h () ; }

p r o t e c t e d void doubleN (){ s i z e *= 2 ; }
p r o t e c t e d double t i m e d T e s t (){

i n t [] n = c r e a t e I n p u t (s i z e) ;
long s t a r t T i m e = System . nanoTime () ;
Q u i c k S o r t . q u i c k S o r t (n , n . l e n g t h) ;
long endTime = System . nanoTime () ;
re turn (double) endTime − s t a r t T i m e ; } }

Figure 1: A simple Java class that conducts a performance
evaluation of the QuickSort algorithm.

Case study: Sorting Algorithms. Included with the
EXPOSE tool is an example doubling experiment called
SortingExperiment. This program provides a number
of canonical sorting algorithms with well-known worst-
case time complexities. Doubling experiments may be per-
formed on these algorithms by running the command java
SortingExperiment algname, replacing algname with the
name of the desired sorting algorithm. Running the com-
mand without providing algname will show a list of options.
When run 1000 times for each of the five provided sorting
algorithms, EXPOSE achieves an accuracy of 98.84%.

Case study: SchemaAnalyst. In other work [2], we
used EXPOSE to perform a comprehensive analysis of the
search-based test data generation tool, SchemaAnalyst, that
generates test suites for relational database schemas [4].
Since it is much more complicated than a sorting algo-
rithm, performing doubling experiments on SchemaAnalyst
requires more parameters than needed to study sorting [5].
To conduct these experiments, we developed a class called
SchemaExperiment that extends DoublingExperiment.
We developed SchemaExperiment to allow for conduct-
ing doubling experiments using a variety of SchemaAnalyst
configurations, as well as accessing EXPOSE’s parameters.
Usage: <java SchemaExperiment> [options]

Options:
--schema, -s Select which schema to use
--criterion Select which criterion to use
--datagenerator Select which data generator to use
--doubler Select which schemaDoubler to use
--convergence Experiment convergent if diff < this
--lookBack Number of ratios to compare for convergence
--tuningTries Minimum number of times to doubles before O(1)
--minDoubles Minimum number of doubles to try
--giveUp, --maxTime Max time for a single trial in hours
--help, --usage Display command line options
-o, --out, --csv Desired csv filename for saving data
--verbose, --debug Display verbose output

Following the terminology from [2], a doubling experi-
ment to evaluate SchemaAnalyst using the AICC criterion,
a random data generator, the RiskIt database schema, and
the number of NOT NULLs in the schema will run with this
command: java SchemaExperiment --criterion AICC
--datagenerator random --schema RiskIt --doubler
DoubleNotNullsSemantic. Although less accurate than in
the sorting case study, EXPOSE still successfully revealed
meaningful trends in SchemaAnalyst’s performance [2].

Deploying on a High-Performance Cluster. Since the
performance of SchemaAnalyst may depend on a number
of factors (i.e., criterion, data generator, schema, and dou-
bling strategy) a comprehensive survey of the parameter
space may be conducted by performing a doubling exper-
iment for each configuration. While computationally ex-
pensive, an experiment of this scale is possible by using a
high-performance computing (HPC) cluster. Each doubling
experiment can be run independently on a separate node of
the cluster; EXPOSE can combine the resulting data for a
later analysis. Data mining techniques can then be lever-
aged to interpret an algorithm’s performance trade-offs.

Parameter Tuning. While EXPOSE greatly eases the
process of conducting doubling experiments, its accuracy
and performance is sensitive to the settings of the system’s
parameters. In particular, the tolerance and lookback val-
ues can result in a doubling experiment terminating pre-
maturely or continuing indefinitely. To complicate the is-
sue further, the parameters must be re-tuned based on hard-
ware properties of the machine(s) being used and the perfor-
mance characteristics of the implementation being studied.

The reliability of the tool and repeatability of its results
would be further improved if EXPOSE could select good set-
tings for these parameters automatically. A reasonable pa-
rameter tuning strategy could be to run EXPOSE on various
algorithms of known worst-case time complexities, such as
the sorting algorithms, and lower the tolerance threshold
until EXPOSE reliably infers the big-Oh time complexities.

Future Work and Conclusion. While we recently used
EXPOSE to study search-based test data generation in the
domain of relational database schemas [2], the tool is gen-
eral and can be applied to many other problem domains.
Future work includes using EXPOSE to evaluate the effi-
ciency of EVOSUITE’s approach to test data generation for
Java programs [6]. In conclusion, EXPOSE makes empir-
ically evaluating the worst-case time complexity of algo-
rithms very convenient. By automating the process of con-
ducting these experiments, EXPOSE enables large-scale em-
pirical studies that would otherwise be infeasible.

References
[1] C. C. McGeoch, A Guide to Experimental Algorithmics, 2012.
[2] C. Kinneer, G. M. Kapfhammer, C. J. Wright, and P. McMinn, “Auto-

matically evaluating the efficiency of search-based test data generation
for relational database schemas,” in Proc. of 27th SEKE, 2015.

[3] C. Kinneer, “EXPOSE software tool,” 2015. [Online]. Available:
https://github.com/kinneerc/ExpOse/

[4] G. M. Kapfhammer, P. McMinn, and C. J. Wright, “Search-based test-
ing of relational schema integrity constraints across multiple database
management systems,” in Proc. of 6th ICST, 2013.

[5] J. Kempka, P. McMinn, and D. Sudholt, “Design and analysis of dif-
ferent alternating variable searches for search-based software testing,”
Theor. Comp. Sci., 2015, In Press.

[6] G. Fraser and A. Arcuri, “1600 faults in 100 projects: Automatically
finding faults while achieving high coverage with EVOSUITE,” Empir.
Softw. Engin., 2013.

