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Abstract—Whilst there is much evidence that both concolic
and search based testing can outperform random testing, there
has been little work demonstrating the effectiveness of either
technique with complete real world software applications. As a
consequence, many researchers have doubts not only about the
scalability of both approaches but also their applicability to pro-
duction code. This paper performs an empirical study applying
a concolic tool, CUTE, and a search based tool, AUSTIN, to the
source code of four large open source applications. Each tool
is applied ‘out of the box’; that is without writing additional
code for special handling of any of the individual subjects, or
by tuning the tools’ parameters. Perhaps surprisingly, the results
show that both tools can only obtain at best a modest level of code
coverage. Several challenges remain for improving automated test
data generators in order to achieve higher levels of code coverage.

I. I

Software testing can be thought of as a sequence of three
fundamental steps:

1. The design of test cases that are good at revealing faults,
or which are at least adequate according to some test
adequacy criterion.

2. The execution of these test cases.
3. The determination of whether the output produced is
correct.

Sadly, in current testing practice, often the only fully
automated aspect of this activity is test case execution. The
problem of determining whether the output produced by the
program under test is correct cannot be automated without an
oracle, which is seldom available. Fortunately, the problem
of generating test data to achieve widely used notions of test
adequacy is an inherently automatable activity.

Such automation promises to have a significant impact on
testing, because test data generation is such a time-consuming
and laborious task. This promised impact has attracted much
attention, leading to several schools of thought as to how best
automate the test data generation process. This paper concerns
two widely studied schools of thought: concolic testing and
search based testing, both of which have been the subject of
much recent attention.

Concolic testing [31], [12], [5] originates in the seminal
work of Godefroid et al. on Directed Random Testing [12].
It formulates the test data generation problem as one of

finding a solution to a constraint satisfaction problem, the
constraints of which are produced by concolic execution of
the program under test. Concolic execution combines symbolic
[18] and concrete execution. Concrete execution drives the
symbolic exploration of a program, and dynamic variable
values obtained by real program execution can be used to
simplify path constraints produced by symbolic execution.

Search based testing [23] formulates the test data adequacy
criteria as objective functions, which can be optimized using
Search Based Software Engineering [7], [14]. The search space
is the space of possible inputs to the program under test.
The objective function captures the particular test adequacy
criterion of interest. The approach has been applied to several
types of testing, including functional [3] and non-functional
[37] testing, mutation testing [1], regression testing [39],
test case prioritization [21], [35], and interaction testing [8].
However, the most studied form of search based testing has
been structural test data generation [27], [19], [29], [26], [36],
[33], [15].

Whilst many papers argue that both concolic and search
based techniques are better than random testing [31], [36],
[15], there has been little work investigating and comparing
their effectiveness with real world software applications. Pre-
vious work has tended to be small-scale, considering only a
couple of programs, or considering only parts of individual
applications to which the test generation technique is known in
advance to be applicable. Furthermore, the test data generators
themselves have tended not to apply test data generation tools
‘out of the box’; i.e. without customization, special handling
for different test subjects, or parameter tuning. This leaves
the literature without convincing answers to several important
questions, including:

• How effective are concolic and search based tools when
applied to real world software applications?
• How long does it take for concolic and search based tools

to achieve certain levels of coverage?

The aim of this paper is to provide answers to these
questions. In order for automated test data generation ap-
proaches to achieve their full potential it is necessary for them
to be evaluated using realistic non–trivial programs without
any ‘special’ (i.e. human) intervention to smooth over the



difficult ‘real world’ challenges that might be encountered.
An empirical study is performed which compares a concolic
tool, CUTE [31], and a search based tool, AUSTIN [20]. The
test adequacy criterion under investigation is branch coverage.
The primary contributions of this paper are the following:

1. An empirical study which determines the level of code
coverage that can be obtained using CUTE and AUSTIN
on the complete source code of four open source programs.
Perhaps surprisingly, the results show that only modest
levels of coverage are possible at best, and there is still
much work to be done to improve test data generators.

2. An empirical study investigating the wall clock time
required for each tool to obtain the coverage that it does,
and thus an indication of the efficiency of each approach.

The rest of the paper is organized as follows. Section II
provides the background information to the concolic and
search based tools, CUTE and AUSTIN, which the empirical
study presented in this paper uses. Section III outlines the
motivation for our work, the research questions addressed,
and the gap in the current literature this paper is trying to
close. The empirical study, results and answers to the research
questions are presented in Section IV, whilst threats to validity
are addressed in Section V. Section VI presents related work,
and Section VII concludes.

II. B

Automated structural test data generation has been a bur-
geoning interest to researchers since at least the 1970s. In this
decade two approaches to the problem emerged - symbolic
execution [18], which is the basis of concolic testing; and
a method that reformulated the problem of executing a path
through a program with floating-point inputs into objective
functions [27], which later developed into the field known as
search based testing.

A. Concolic Testing

Concolic testing builds on the ideas of symbolic execution.
For a given path through a program, symbolic execution
involves constructing a path condition; a system of constraints
in terms of the input variables that describe when the path
will be executed. For example, the path condition which
executes the if statement as true in Figure 1a would simply
be a0 + 5 = b0 − 10, where a0 and b0 refer to the symbolic
values of the input variables a and b respectively. To cover the
true branch, the path condition is then solved by a constraint
solver in order to derive concrete input values.

The path condition can easily become unsolvable, however,
if it contains expressions that cannot be handled by constraint
solvers. This is often the case with floating-point variables,
or non-linear constraints. For example, a linear constraint
solver would encounter difficulties with the program of Figure
1b because of the non-linear predicate appearing in the if
condition.

Concolic testing can alleviate some of the problems of
non-linearity by combining concrete execution with symbolic

generation of path conditions. The idea is to simplify the path
condition by substituting sub-expressions with concrete val-
ues, obtained by actual dynamic executions. This substitution
process can remove some of the non-linear sub-expressions in
a path condition making them amenable to a constraint solver.
Concolic execution originated from the work of Godefroid et
al. [12]. The term concolic was coined by Sen et al. [31] in
their work introducing the CUTE tool, which is based upon
similar principles.

The CUTE Tool: Suppose execution of the path which
executes the true branch of the program of Figure 1b is
required. CUTE executes the program with some input. The
default is to execute a function with all variables of primitive
type set to zero, although random values can be used instead.
Suppose the function is executed with the random values 536
and 156 for x and y respectively. The path taking the false
branch is executed. The path condition is x0 ∗ y0 < 100.
Since this constraint is non-linear, CUTE will replace x0
with its concrete value, 536. The path condition becomes
536 ∗ y0 < 100, which is now linear and can be passed to
the constraint solver to find an appropriate value for y (i.e.
zero or any value that is negative).

CUTE attempts to execute all feasible program paths, using
a depth-first strategy. The first path executed is that, which is
traversed with all zero or random inputs as described above.
The next path to be attempted is the previous path, but taking
the alternative branch at the last decision statement executed
in the path. The new path condition is therefore the same
as the previous path condition, but with the last constraint
negated, allowing for substitution of sub-expressions in the
new path condition with sensible concrete values (as in the
example above). For programs with unbounded loops, CUTE
may keep unfolding the body of the loop infinitely many times,
as there may be an infinite number of paths. The CUTE tool
is therefore equipped with a parameter which places a limit
on the depth of the depth-first path unfolding strategy.

B. Search Based Testing

Like symbolic–execution–based testing, the first sugges-
tion of optimization as a test data generation technique also
emerged in the 1970s, with the seminal work of Miller and
Spooner [27]. Miller and Spooner showed that the series of
conditions that must be satisfied for a path to be executed can
be reformulated as an objective function, the optima of which
(i.e. the test data that executes the path) could be found using
optimization techniques.

The role of an objective function is to return a value that
indicates how ‘good’ a point in a search space (i.e. an input
vector) is compared to the best point (i.e. the required test
data); the global optimum. For example, if a program condition
a == b must be executed as true, the objective function could
be |a− b|. The closer the output of this formula is to zero, the
‘closer’ the program input is to making a and b equal, and
the closer the search technique is to finding the test data of
interest.



void testme1(int a, int b)

{

a += 5; b -= 10;

if (a == b)

// ...

}

(a) Example for demonstrating symbolic execution. The
branch predicate is linear

void testme2(int x, int y)

{

if (x * y < 100)

// ...

}

(b) Example for demonstrating concolic execution and
search based testing. The branch predicate is non-linear

(c) Surface of the objective function for executing the true
branch of the program in (b)

void testme3(int a, int b, int c)

{

(1) if (a == b)

(2) if (b == c)

(3) if (a == c)

(4) // ...

}

(d) Example for demonstrating objective function
calculation for the AUSTIN tool

Fig. 1. Examples for demonstrating symbolic, concolic and
search based testing

Because an optimizing search technique is used rather
than a constraint solver, non-linear constraints present fewer
problems. For example the surface of the objective function
for taking the true path through the if condition of Figure 1b
can be seen in Figure 1c. The surface is smooth and provides
the optimization process with a clear ‘direction’, guiding the
search to the required test data. Furthermore, computation of
the objective function by dynamically executing the program
alleviates another problem of both symbolic and concolic
testing, i.e floating-point inputs.

The suggestions of Miller and Spooner were not subse-
quently taken up until Korel developed them further in 1990

[19], when he proposed the use of a search technique known
as the ‘alternating variable method’. Since then the ideas have
been applied to other forms of testing [3], [37], [1], [39], [21],
[35], [8], using a variety of optimizing search techniques,
including genetic algorithms [29], [26], [36]. The objective
function has been further developed to generate test data for a
variety of program structures, including branches, as well as
paths [36].

The AUSTIN Tool: AUSTIN is a tool for generating branch
adequate test data for C programs. AUSTIN does not attempt
to execute specific paths in order to cover a target branch;
the path taken up to a branch is an emergent property of the
search process. The objective function used by AUSTIN was
introduced by Wegener et al. [36] for the Daimler Evolutionary
Testing System. It evaluates an input against a target branch
using two metrics; the approach level and the branch distance.
The approach level records how many nodes on which the
branch is control dependent, were not executed by a partic-
ular input. The fewer control dependent nodes executed, the
‘further away’ the input is from executing the branch in control
flow terms. Thus, for executing the true branch of statement
3 in Figure 1d; the approach level is

• 2 when an input executes the false branch of statement
1;
• 1, when the true branch of statement 1 is executed

followed by the false branch of statement 2;
• zero if statement 3 is reached.

The branch distance is computed using the condition of the
decision statement at which the flow of control diverted away
from the current ‘target’ branch. Taking the true branch from
statement 3 as an example again, if the false branch is taken
at statement 1, the branch distance is computed using |a − b|,
whilst |b−c| is optimized if statement 2 is reached but executed
as false, and so on. The branch distance is normalized and
added to the approach level.

The search method used is the Alternating Variable Method
(AVM), proposed by Korel [19]. The AVM is a simple search
technique, which was shown to be very effective by Harman
and McMinn [15] when compared with more sophisticated
optimization techniques such as genetic algorithms.

AUSTIN, like CUTE, begins with all primitives set to
zero. If the target is not executed, the AVM cycles through
each input of primitive type and performs so–called ‘pattern
moves’, guided by the objective function. If a complete cycle
of adjustments takes place with no improvement in objective
value, the search restarts using random values.

Suppose the program of Figure 1d is executed with the input
< a = 100, b = 200, c = 300 >, with the aim of executing the
true branch of statement 3. AVM takes the first variable, a, and
performs exploratory moves; executions of the program where
a is decreased and increased by a small amount δ (δ = 1
for integers and 0.1 for floating point variables). An increased
value of the variable a brings it closer to b and results in a
better objective value.



AVM then makes pattern moves for as long as the objective
function continues to yield an improved value. The value
added to the variable in the nth pattern move is computed using
the formula 2n · dir · δ; where dir ∈ {−1, 1} corresponding to
the positive or negative ‘direction’ of improvement, identified
by the initial exploratory moves. Thus consecutive exploratory
moves for the variable a are 102, 104, 108 and so on. Pattern
moves will improve the objective value until a value of 228
is reached for the variable a. At this point the minimum
(a = 200) has been overshot, so the AVM repeats the
exploratory-pattern move cycle for as long as necessary until
the minimum is reached. When a = 200, the true branch of
statement 1 is executed. For executing statement 2, exploratory
moves on the variable a both lead to a worse objective value,
because the original outcome at statement 1 is affected and the
approach level worsens. The AVM will then consider the next
variable, b. Exploratory moves here have the same effect, and
so the AVM moves onto the variable c. Decreasing the value
of c improves the objective value, and so pattern moves are
made. Eventually each input value is optimized to 200.

Should exploratory moves produce no improvement in ob-
jective value, with the required test data not found either,
the search has hit a local minima from which it cannot
proceed. AVM terminates and restarts with a new random input
vector. Typically, the search is afforded a ‘budget’ of objective
function evaluations (i.e. program executions) in which to find
test data, otherwise the search is deemed to have failed. This
could be because the branch is infeasible. In some cases,
however, the objective function surface can be flat, offering the
search no guidance to the required test data. This is sometimes
due to the presence of boolean ‘flag’ variables [2], [25], which
can result in two plateaus for a branch condition; one where
the flag is true, and one where it is false.

C. Handling Inputs Involving Pointers

The above descriptions explained how concolic testing and
search based testing handle inputs of a primitive type only.
This section explains how CUTE and AUSTIN handle pointer
inputs. The CIL (C Intermediate Language) infrastructure [28]
is used to transform and simplify programs such that all
predicates appearing in decision statements contain only either
pointer types or arithmetic types. In addition, the source con-
tains no compound predicates. Thus all conditions involving
pointers are of the form x == y or x != y (where x and y
could also represent NULL).

Pointers in CUTE: The first path explored by the CUTE tool
is the path executed where inputs of primitive type are zero
(or of a random value, depending on the settings used). If the
function involves pointer variables, these are always initially
set to NULL. However, further paths through the program
may require pointers to point to an actual data structure
instead. In order to find the ‘shape’ of this data structure,
CUTE incorporates symbolic variables for pointers in the path
condition. A graph-based process is used to check that the
constraints over the pointer variables are feasible, and finally,

void testme4(item* ptr)

{

(1) if (ptr != NULL)

(2) if (ptr->left != NULL)

(3) if (ptr->left->right == ptr)

(4) // ...

}

(a) Code snippet

(b) CUTE feasibility graph for path which executes all
decisions in (a) as true

Fig. 2. Example for demonstrating pointer handling in CUTE
and AUSTIN

a simple procedure is used to actually build the data structure
required.

For the program of Figure 2a, and the path that executes
the true branch at each decision, CUTE accumulates the path
constraint:

ptr0 , NULL ∧ le f t0 , NULL ∧ right1 = ptr0

CUTE keeps a map of which symbolic variable corresponds
to which point in the data structure, for example, le f t0 maps to
ptr->left. The feasibility check involves the construction of
an undirected graph, which is built incrementally at the same
time as the path condition is constructed from the conditions
appearing in the program. The nodes of the graph represent
abstract pointer locations, with node labels representing the
set of pointers which point to those locations. A special node
is initially created to represent NULL. Edges between nodes
represent inequalities. After statement 1 in the example, the
graph consists of a node for ptr0 with an edge leading from it
to the NULL node. When statement 2 is encountered, a new
node is constructed for le f t0, with an edge to NULL. Finally,
right1 is merged into the existing ptr0 node, as they must point
to the same location (Figure 2b). Feasibility is checked as each
constraint is added for each decision statement. An equality
constraint between two pointers x and y is feasible if and only
if there is no edge in the graph between nodes representing
the locations of x and y. An inequality constraint between x
and y is feasible if and only if the locations of x and y are
not represented by the same node.

If the path condition is feasible, the data structure is built
incrementally. Each new branching decision adds a new con-
straint to the path condition, and the data structure is created
on the basis of each constraint using the rules of Table I. A
more detailed treatment can be found in the work of Sen et
al.[31].

Pointers in AUSTIN: There has been little work with respect
to generating dynamic data structures in search based testing.
Korel [19] developed a limited method for simple Pascal
data structures. In order to apply search based testing to real



TABLE I
D      
       CUTE

 AUSTIN

Constraint CUTE AUSTIN
m0 = NULL Assign NULL to m0

m0 , NULL Allocate a new memory location
pointed to by m0

m0 = m1 Make m1 alias m0

m0 , m1 Allocate a new
memory location
pointed to by m1

With an even
probability, assign
NULL or allocate
a new memory
location pointed to
by m0

world programs this limitation had to be overcome. AUSTIN
uses search based techniques for primitive inputs, a symbolic
process akin to that of CUTE is used for pointers[20]. As with
CUTE, pointer inputs are initially set to NULL. During the
search process, a branch distance calculation may be required
for a condition that involves a pointer comparison. However
branch distances over physical pointer addresses do not usually
give rise to useful information for test data generation; for
example it is difficult to infer the shape of a dynamic data
structure. Therefore, instead of computing a branch distance,
AUSTIN performs symbolic evaluation for the path taken up
to the predicate as executed by the current input generated by
the AVM. The result is a path condition of the same form as
generated by CUTE. As with CUTE, the constraints added to
the path condition are used to incrementally build the dynamic
data structure. The rules for doing this appear in Table I.
AUSTIN does not perform a feasibility check; if the branching
condition at the control dependent node is not executed as
required, the AVM process restarts afresh. For a more in-depth
treatment, see reference [20].

III. M 
R Q

One of the first tests for any automatic test data generation
technique is that it outperforms random testing. Many authors
have demonstrated that both concolic based and search based
techniques can outperform purely random test data generation.
However, there are fewer studies that have attempted to
evaluate concolic and search based approaches on real world
programs.

Previous studies have tended to be small-scale [19], [36] or,
at least in the case of search based approaches, concentrated
on small ‘laboratory’ programs. Where production code has
been considered, work has concentrated solely on libraries
[33] or individual units of applications [15]; usually with
the intention of demonstrating improvements or differences
between variants of the techniques themselves.

Studies involving concolic approaches have also tended to
focus on illustrative examples [31], [38], [9], [5], with rela-

tively little work considering large scale real world programs
such as the vim text editor [4], [22], network protocols [10]
or windows applications [11]. Furthermore, no studies have
compared the performance of concolic and search based
testing on real world applications.

The research questions to be answered by the empirical
study are therefore as follows:

RQ 1: How effective are concolic and search based test
data generation for real world programs? Given a set of
real world programs, how good are concolic and search based
test data generators at achieving structural coverage?

RQ 2: What is the relative efficiency of each individual
approach? If it turns out that both approaches are more or less
equally effective at generating test data, efficiency will be the
next issue of importance as far as a practitioner is concerned. If
one approach is more effective but less efficient than the other,
what is the trade off that the practitioner has to consider?

IV. E S

The empirical study was performed on a total of 87,589 pre–
processed lines of C code contained within four open-source
programs. This is the largest study of search based testing by
an order of magnitude and is similar in size to the largest
previous study of any form of concolic testing.

A. Test subjects

Details of the subjects of the empirical study are recorded
in Table II. A total of 387 functions were tested. Since the
study is concerned with branch coverage, trivial functions not
containing any branches were ignored. In addition, further
functions had to be omitted from the study, because they
could not be handled by CUTE or AUSTIN. These included
functions whose inputs were files, data structures involving
function or void pointers, or had variable argument lists.

The programs chosen are not trivial for automated test data
generation. libogg is a library used by various multimedia
tools and contains functions to convert to and from the Ogg
multimedia container format, taking a bitstream as input.
plot2d is a relatively small program which produces scatter
plots directly to a compressed image file. The core of the
program is written in ANSI C, however the entire application
includes C++ code. Only the C part of the program was
considered during testing because the tools handle only C.
time is a GNU command line utility which takes, as input,
another process (a program) with its corresponding arguments
and returns information about the resources used by a specific
program, including wall-clock and CPU times. zile is a text
editor in Unix, and makes heavy use of string operations. It
was designed to be a more lightweight version of Emacs.

B. Experimental setup

Each function of each test subject was taken in turn (here-
inafter referred to as the ‘FUT’ – Function Under Test), with
the aim of recording the level of coverage that could be
achieved by each tool.



TABLE II
D         . I  ‘F’ , ‘N-’    
  . ‘T-’     -,         ,
 ‘’            (.. -      
 ). I  ‘B’ , ‘’         



Test Lines Functions Branches
Object of Code Total Non-Trivial Top Level Tested Total Tested
libogg 2,552 68 33 32 33 290 284
plot2d 6,062 35 35 35 35 1,524 1,522
time 5,503 12 10 8 10 202 198
zile 73,472 446 339 312 340 3,630 3,348
Total 87,589 561 417 387 418 5,646 5,352

Since CUTE and AUSTIN take different approaches to
test data generation, care had to be taken in setting up
the experiments such that the results were not inadvertently
biased in favour of one of the tools. The main challenge was
identifying suitable stopping criteria that were ‘fair’ to both
tools. Both tools place limits on the number of times the
function under test can be called, yet this is set on a per-
function basis for CUTE and a per-branch basis for AUSTIN.
Furthermore, one would expect CUTE to call the function
under test less often than AUSTIN, because it carries out
symbolic evaluation. Thus, setting a limit that was ‘equal’
for both tools was not feasible. Therefore it was decided that
each limit would be set to a high value, with a time limit of
2 minutes of wall clock time per FUT used as an additional
means of deciding when a tool’s test data generation process
should be terminated.

CUTE’s limit was set to the number of branches in the FUT
multiplied by 10,000. CUTE can reach this limit in only two
cases; firstly if it keeps unfolding a loop structure, in which
case it won’t cover any new branches; or secondly if the limit
is less than the number of interprocedural branches (which
was not the case for any of the test subjects considered).
AUSTIN’s limit was set to 10,000 FUT executions per branch,
with branches in the FUT attempted sequentially in reverse
order. Oftentimes the search process did not exhaust this limit
but was terminated by the overall time limit instead.

Thirty ‘trials’ were performed for each tool and each
function of each test subject. AUSTIN is stochastic in nature,
using random points to restart the search strategy once the
initial search, starting with all primitives as zero, fails. Thus,
several runs need to be performed to sample its behaviour.
Since some test subjects exhibit subtle variations in behaviour
over different trials (e.g. in the time program), CUTE was
also executed thirty times for each function, so that AUSTIN
did not benefit unfairly from multiple executions.

Coverage was measured in two ways. The first is respective
to the branches covered in the FUT only. A branch is counted
as covered if it is part of the FUT, and is executed at least
once during the thirty trials. The second measure takes an
interprocedural view. A branch is counted as covered if it is
part of the FUT or any function reachable through the FUT.

Interprocedural coverage is important for CUTE, since path
conditions are computed in an interprocedural fashion. Any
branches covered interprocedurally by AUSTIN, however, are
done so serendipitously, as the tool only explicitly targets
branches in the FUT.

Apart from the settings necessary for a fair comparison,
as discussed above, both tools were applied ‘out of the box’,
i.e. with default parameters and without the writing of special
test drivers for any of the test subjects. As mentioned in
Section II-A, CUTE has an option to limit the level of its
depth-first search, thus preventing an infinite unfolding of
certain loops. However, as it is not generally known, a priori,
what a reasonable restriction is, CUTE was used in its default
mode with no specified limit, i.e. an unbounded search.

The test driver for both tools is not only responsible for
initializing input parameters, but also the place to specify any
pre–conditions for the function under test. AUSTIN generates
a test driver automatically by examining the signature of the
FUT. The test drivers for CUTE had to be written manually
but were constructed using the same algorithm as AUSTIN.
Writing pre–conditions for functions without access to any
specifications is non–trivial. For the study only the source code
was available with no other documentation. Therefore it was
decided the only pre–condition to use was to require top level
pointers to be non-NULL (as described in Section II-C).

C. Answers to Research Questions

RQ 1: How effective are concolic and search based test
data generation for real world programs? Figure 3 plots
three different ‘views’ of the coverage levels obtained by
CUTE and AUSTIN with the test subjects. The first view,
Figure 3a, presents coverage of branches in the FUT only.
However, CUTE places an emphasis on branches covered
in functions called by the FUT, building up path condi-
tions interprocedurally. For AUSTIN interprocedural branch
coverage is incidental, with test generation directed at the
FUT only. Therefore, Figure 3b plots interprocedural coverage
data which, in theory, should be favourable to CUTE. Fi-
nally, CUTE could not attempt 81 functions, containing 1,148
branches. Some of these functions involved void pointers,
which cannot be handled by CUTE. However, a number of
functions could not be tested by CUTE because the test subject



(a) Branches covered only as part of the (b) Branches covered in the function under test
function under test and interprocedurally

Fig. 3. Branch coverage for the test subjects with CUTE and
AUSTIN. CUTE explicitly explores functions called by the
function under test, whereas AUSTIN does not. Therefore
the graph (a) counts only branches covered in each function
tested individually. Graph (b) counts branches covered in the
function under test and branches covered in any functions
called. Graph (c) is graph (b) but with certain functions that
CUTE cannot handle excluded

(c) Branches covered in functions that CUTE can
handle only

TABLE III
C            

Test CUTE AUSTIN
Object Function Branches Time Branches covered Time Branches covered

Function (Inter- (s) Function (Inter- (s) Function (Inter-
Under Test procedural) Under Test procedural) Under Test procedural)

libogg ogg stream clear 8 (8) 0.84 7 (10) 134.75 5 (7)
oggpack read 14 (14) 0.24 2 (2) 0.18 2 (2)

plot2d CPLOT BYTE MTX Fill 4 (8) 131.25 4 (4) 130.05 1 (1)
CPLOT DrawDashedLine 56 (56) 130.43 13 (13) 130.4 37 (37)
CPLOT DrawPoint 16 (16) 0.51 13 (13) 131.82 13 (13)

time resuse end 6 (6) 0.42 4 (4) 131.84 5 (5)
zile astr rfind cstr 6 (6) 0.45 2 (2) 0.17 2 (2)

check case 6 (6) 0.38 1 (1) 130.49 6 (6)
expand path 82 (84) 0.37 0 (1) 0.16 0 (1)
find window 20 (20) 0.4 1 (1) 131.4 1 (1)
line beginning position 8 (8) 0.27 0 (0) 0.18 0 (0)
setcase word 40 (74) 0.31 0 (0) 0.18 0 (0)

Total 266 306

did not compile after CUTE’s instrumentation. For certain
functions of the zile test subject, the instrumentation casts a
data structure to an unsigned integer, and subsequently tries to
dereference a member of the data structure, which results in an
error. Since CUTE’s exploration behaviour is interprocedural,
all functions within this source file became untestable. Thus,
Figure 3c plots interprocedural branch coverage, but removing
these branches from consideration.

Strikingly, all three views of the coverage data show that
in most cases, the majority of branches for an application
were not covered by either tool. The only exception is the

plot2d test subject. Here, AUSTIN managed 77% coverage
taking interprocedural branches into account, compared to
CUTE’s 50%. Code inspection revealed that 13 functions in
plot2d contained unbounded loops. CUTE therefore never
attempted to cover any more branches preceding the body of
the loop (both intraprocedural and interprocedural) and instead
kept increasing the number of loop iterations by one until its
timeout or iteration limit was reached. For all other subjects,
coverage for either tool does not exceed 50% whatever ‘view’
of the data is considered. It has to be noted, however, that
AUSTIN does seem to cover a higher number of the branches.



When a modified path condition falls outside the supported
theory of CUTE’s constraint solver, unlike AUSTIN, CUTE
does not try a fixed number of random ‘guesses’ in order to
find test data. AUSTIN on the other hand will spend 10,000
attempts at covering the branch. In the worst case this is equal
to performing a random search. Nevertheless, it has a higher
chance of finding test data than CUTE, simply because it
spends more effort per branch.

To conclude, these data suggest that the concolic and search
based approaches are not as effective for real world programs
as researchers may have previously been led to believe by
previous smaller–scale studies. Next the efficiency of each of
the tools is examined with respect to a subset of the branches.

RQ 2: What is the relative efficiency of both approaches?
In order to answer this research question, a random sample
of 12 functions were taken and the performance of each
individual tool analysed further. These functions are listed
in Table III and comprise 266 branches, with a further 40
reachable interprocedurally.

CUTE times out (reaching the 120 second limit) on two
occasions. This is because CUTE gets stuck unfolding loops
in called functions. AUSTIN times out on five occasions.
For example, the function ogg stream clear from libogg
takes as input a pointer to a data structure containing 18
members, one of which is an array of 282 unsigned char-
acters, while 3 more are pointers to primitive types. Since
AUSTIN does not use any input domain reduction, it has to
continuously cycle through a large input vector in order to
establish a direction for the search so it can start applying its
pattern moves. Secondly, unbounded loops cause problems for
AUSTIN too with respect to the imposed timeout. Whenever
AUSTIN performs a random restart, it has a high chance of
increasing the number of loop iterations by assigning a large
value to the termination criterion, thus slowing down execution
time of the function under test.

The table does not reveal a prevailing pattern that would
allow us to simply conclude that ‘CUTE is more efficient’
or vice versa. The results are very much dependent on the
function under consideration. However, unless the tool gets
‘trapped’ (e.g. CUTE continually unfolding a loop), each tool
can be expected to terminate within a second, which is an
entirely practical amount of time.

V. T  V
Any attempt to compare two different approaches faces

a number of challenges. It is important to ensure that the
comparison is as fair as possible. Furthermore, the study
presented here, as we are comparing two widely studied
approaches to test data generation, also seeks to explore how
well these approaches apply to real world code. Naturally, this
raises a number of threats to the validity of the findings, which
are briefly discussed in this section.

The first issue to address is that of the internal validity
of the experiments, i.e. whether there has been a bias in the
experimental design that could affect the obtained results. One
potential source of bias comes from the settings used for each

tool in the experiments, and the possibility that the setup could
have favoured or harmed the performance of one or both tools.
In order to address this, default settings were used where
possible. Where there was no obvious default (e.g. termination
criteria), care was taken to ensure that reasonable values were
used, and that they allowed a sensible comparison between
performance of both tools.

Another potential source of bias comes from the inherent
stochastic behaviour of the metaheuristic search algorithm
used in AUSTIN. The most reliable (and widely used) tech-
nique for overcoming this source of variability is to perform
tests using a sufficiently large sample of result data. In order
to ensure a large sample size, experiments were repeated 30
times. Due to the stochastic nature of some of the test subjects
in the study, experiments were also repeated 30 times for
CUTE, so as not to bias the results in favour of the AUSTIN
tool.

A further source of bias includes the selection of the
programs used in the empirical study, which could potentially
affect its external validity; i.e. the extent to which it is possible
to generalise from the results obtained. The rich and diverse
nature of programs makes it impossible to sample a sufficiently
large set of programs such that all the characteristics of
all possible programs could be captured. However, where
possible, a variety of programming styles and sources have
been used. The study draws upon code from real world open
source programs. It should also be noted that the empirical
study drew on over 561 functions comprising of over 5,646
branches, providing a large pool of results from which to make
observations.

The data were collected and analysed in three different
ways; taking into account coverage in the FUT only, interpro-
cedural coverage and removing functions that CUTE could
not handle from the sample. No matter which analysis was
conducted, the results always showed a consistently poor level
of coverage. Nevertheless, caution is required before making
any claims as to whether these results would be observed on
other programs, possibly from different sources and in different
programming languages. As with all empirical experiments in
software engineering, further experiments are required in order
to replicate the results here.

VI. RW

There have been several tools developed using Directed
Random Testing. The first tool was developed by Godefroid et
al. [12] during their work on directed random testing and the
DART tool. Unlike CUTE, DART does not attempt to solve
constraints involving memory locations. Instead, pointers are
randomly initialized to either NULL or a new memory loca-
tion. DART does not transform non linear expressions either
and simply replaces the entire expression with its concrete
value. Cadar and Engler independently developed EGT [5].
EGT starts with pure symbolic execution. When constraints on
a programs input parameters become too complex, symbolic
execution is paused and the path condition collected thus far
instantiated with concrete inputs. Runtime values are then used



to simplify symbolic expressions so that symbolic execution
can continue with a mix of symbolic variables and constants.
CREST [4] is a recent open-source successor to CUTE. Its
main difference to CUTE is a more sophisticated, CFG based,
path exploration strategy.

Pex [32] is a parameterized unit testing framework devel-
oped by Microsoft. Contrary to the majority of structural test-
ing tools, it performs instrumentation at the .NET intermediate
language level. As a result it is able to handle all ‘safe’ .NET
instructions and can also include information from system
libraries. Pex can be fully integrated into the Visual Studio
development environment. Its tight coupling with the .NET
runtime also allows it to handle exceptions, e.g. by suggesting
guarding statements for objects or preconditions to functions.

Several tools have also been developed for search based
testing. ET-S, developed by Daimler [36], uses evolutionary
algorithms to achieve various coverage types, including path,
branch and data flow coverage. IGUANA [24] is a tool
developed for researchers, and incorporates different search
approaches, as well as an API for the development of different
objective functions. The eToc tool [33], implements an evolu-
tionary strategy for JAVA classes. The tool evolves sequences
of method calls in order to achieve branch coverage.

Xie et al. [17] were the first to combine concolic and search
based testing in a framework called EVACON, which aims
to maximize coverage of JAVA classes using both eToc and
jCUTE, a JAVA version of CUTE [30].

There have been a number of previous empirical studies
involving concolic and search based approaches.

Burnim and Sen [4] considered different search strategies
to explore program paths in concolic testing and evaluated
their findings on large open source applications including the
Siemens benchmark suite [16], grep [13], a search utility
based on regular expressions, and vim [34], a common text
editor. An extended version of CUTE [22] has also been
applied to the vim editor. Since its introduction, DART has
been further developed and used in conjunction with other
techniques to test functions from real world programs in an
order of magnitude of 10,500 LOC [6], [10]. Concolic testing
has also been used to search for security vulernabilities in
large Microsoft applications as part of the SAGE tool [11].

Studies in search based software testing have largely in-
volved small laboratory programs, with experiments designed
to show that search based testing is more effective than random
testing [26], [36]. There are comparatively fewer studies
which have featured real world programs; those that have,
considered only libraries [33] or parts of applications [15]
in order to demonstrate differences between different search
based approaches.

The present paper complements and extends this previous
work. It is the first to compare both approaches on the same
set of unadulterated, non–trivial, real world test subjects. It is
also the largest study of search based testing by an order of
magnitude.

VII. C

This paper has investigated the performance of two ap-
proaches to automated structural test data generation, the
concolic approach embodied in the CUTE tool, and the search
based approach implemented in the AUSTIN tool. The empir-
ical study centred on four complete open source applications.
The results show that there are many challenges remaining in
making automatic test data generation tools robust and of a
standard that could be considered ‘industrial-strength’. This is
because with the exception of one of the test subjects chosen,
neither tool managed to generate test data for over 50% of the
branches in each application’s code.

Out of the many open challenges in automated test data
generation, two seem to be the most prominent for future
work. On a practical level, tools need to be able to prevent or
recover from segmentation faults, so that they may continue
the test data generation process to any effect. Secondly test
data generation tools need to become much more heteroge-
nious in nature. Instead of performing pure static or dynamic
analysis, a combination of both is required in order to tackle
problems such as testing uninstrumented code, overcoming
limitations of a constraint solver, and preventing flat or rugged
fitness landscapes in dynamic testing. Work has already begun
investigating how search based algorithms can be used to find
solutions in concolic testing in the presence of floating point
computations.
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