
Search-based Software Test Data Generation:

A Survey

Phil McMinn
The Department of Computer Science, University of Sheffield

Regent Court, 211 Portobello Street
Sheffield, S1 4DP,UK

p.mcminn@dcs.shef.ac.uk

This is a preprint of an article published in
Software Testing, Verification and Reliability,

14(2), pp. 105-156, June 2004.
Copyright (c) Wiley 2004.

Abstract

The use of metaheuristic search techniques for the automatic genera-

tion of test data has been a burgeoning interest for many researchers in

recent years. Previous attempts to automate the test generation process

have been limited, having been constrained by the size and complexity of

software, and the basic fact that in general, test data generation is an un-

decidable problem. Metaheuristic search techniques offer much promise

in regard to these problems. Metaheuristic search techniques are high-

level frameworks, which utilise heuristics to seek solutions for combinato-

rial problems at a reasonable computational cost. To date, metaheuristic

search techniques have been applied to automate test data generation for

structural and functional testing; the testing of grey-box properties, for

example safety constraints; and also non-functional properties, such as

worst-case execution time. This paper surveys some of the work under-

taken in this field, discussing possible new future directions of research

for each of its different individual areas.

Keywords: search-based software engineering; automated software test

data generation; evolutionary testing; metaheuristic search; evolutionary

algorithms; simulated annealing

1 Introduction

The use of metaheuristic search techniques for the automatic generation of test
data has been a burgeoning interest for many researchers in recent years. In
industry, test data selection is generally a manual process - the responsibility
for which usually falls on the tester. However this practice is extremely costly,
difficult and laborious. Automation in this area has been limited. Exhaustive

1

enumeration of a program’s input is infeasible for any reasonably-sized program,
yet random methods are unreliable and unlikely to exercise “deeper” features
of software that are not exercised by mere chance. Previous efforts have been
limited by the size and complexity of the software involved, and the basic fact
that in general, test data generation is an undecidable problem.

The application of metaheuristic search techniques to test data generation
is a possibility which offers much promise for these problems. Metaheuristic
search techniques are high-level frameworks which utilise heuristics in order to
find solutions to combinatorial problems at a reasonable computational cost.
Such a problem may have been classified as NP-complete or NP-hard, or be a
problem for which a polynomial time algorithm is known to exist but is not prac-
tical. They are not standalone algorithms in themselves, but rather strategies
ready for adaption to specific problems. For test data generation, this involves
the transformation of test criteria to objective functions. Objective functions
compare and contrast solutions of the search with respect to the overall search
goal. Using this information, the search is directed into potentially promising
areas of the search space.

Search-based software test data generation is just one example of search-
based software engineering [1, 2]. To date, metaheuristic search techniques have
been applied to automate test data generation in the following areas:

• the coverage of specific program structures, as part of a structural, or
white-box testing strategy;

• the exercising of some specific program feature, as described by a specifi-
cation;

• attempting to automatically disprove certain grey-box properties regard-
ing the operation of a piece of software, for example trying to stimulate
error conditions, or falsify assertions relating to the software’s safety;

• to verify non-functional properties, for example the worst-case execution
time of a segment of code.

This paper surveys work undertaken in these areas and the results achieved.
Section 2 begins by reviewing some of the search techniques used. Section
3 discusses their application to structural testing, which to date has received
the greatest share of attention from search-based testing researchers. Section
4 presents work in the area of functional testing, followed by grey-box testing
(Section 5) and finally non-functional testing (Section 6). At the end of each
section, the paper outlines possible directions for future research appropriate to
that area.

2 Metaheuristic Search Techniques

In order to adapt a metaheuristic search technique to a specific problem, a
number of different decisions have to be made - for example the way in which
solutions should be encoded so that they can be manipulated by the search. A
good choice of encoding will ensure that similar solutions in unencoded space
are also “neighbours” in representational space. In this way, the search will
be allowed to move easily from one solution to another that shares a similar

2

set of properties. These movements are dependent on the evaluation of can-
didate solutions, performed using a problem-specific objective function. With
feedback from the objective function, the search seeks “better” solutions based
on knowledge and experience of previous candidates. A good objective function
is therefore critical to the success of the search. Solutions that are “better” in
some respect should be rewarded with better objective values, whereas poorer
solutions should be punished with poorer objective values. Whether a “better”
objective value is, in practice, a higher value or lower value, is dependent on
whether the search is seeking to minimise or maximise the objective function.
An objective function which is being maximised reflects the relative “goodness”
of candidate solutions, whereas an objective function to be minimised (more
usually referred to in this context as a cost function) reflects the relative unde-
sirability of solutions.

The next section outlines some metaheuristic techniques that have been used
in software test data generation, namely Hill Climbing, Simulated Annealing and
Evolutionary Algorithms. Further treatment of these search techniques can be
found in reference [3]. The last decade has seen the emergence of many new
techniques, which have not been exploited by the test data generation techniques
presented here. Reference [4] gives treatment to some of these.

2.1 Hill Climbing

“Hill Climbing” is a well known local search algorithm. Hill Climbing works to
improve one solution, with an initial solution randomly chosen from the search
space as a starting point. The neighbourhood of this solution is investigated. If
a better solution is found, then this replaces the current solution. The neigh-
bourhood of the new solution is then investigated. If a better solution is found,
the current solution is replaced again, and so on, until no improved neighbours
can be found for the current solution.

This progressional improvement is likened to the climbing of hills in the
“landscape” of a maximising objective function. In this landscape, peaks char-
acterise solutions with locally optimal objective values, and troughs signify solu-
tions with the locally poorest objective values. In a “steepest ascent” climbing
strategy, all neighbours are evaluated, with the neighbour offering the great-
est improvement chosen to replace the current solution. In a “random ascent”
strategy (sometimes referred to as “first ascent”), neighbours are examined at
random and the first neighbour to offer an improvement is chosen. A high level
description of the algorithm can be seen in Figure 1.

Hill climbing is simple and gives fast results. However it is easy for the
search to yield sub-optimal results when the hill climbed leads to a solution that
is locally optimal, but not globally optimal. In such cases, the search becomes
trapped at the peak of a hill, unable to explore other areas of the search space.
The search will also become stuck along plateaux in the landscape. In such
circumstances, no neighbouring solution is deemed to offer an improvement over
the current solution, since they all have the same objective value. Therefore, in
non-trivial landscapes, results obtained with hill climbing are highly dependent
on the starting solution. A common extension to this algorithm is to incorporate
a series of “restarts” involving different initial solutions, to sample more of the
search space and minimise this problem as much as possible.

3

Select a starting solution s ∈ S

Repeat
Select s′ ∈ N(s) such that obj(s′) > obj(s) according to ascent strategy
s← s′

Until obj(s) ≥ obj(s′), ∀s′ ∈ N(s)

Figure 1: High level description of a hill climbing algorithm, for a problem with
solution space S; neighbourhood structure N ; and obj, the objective function
to be maximised

2.2 Simulated Annealing

It is desirable to have a search framework that is less dependent on the starting
solution. Simulated Annealing is similar in principle to Hill Climbing. However,
by probabilistically accepting poorer solutions, Simulated Annealing allows for
less restricted movement around the search space. The probability of acceptance
p of an inferior solution changes as the search progresses, and is calculated as:

p = e−
δ

t

where δ is the difference in objective value between the current solution and the
neighbouring inferior solution being considered, and t is a control parameter
known as the temperature. The temperature is cooled according to a cooling
schedule. Initially the temperature is high, in order to allow free movement
around the search space, and so that dependency on the starting solution is
lost. As the search progresses, the temperature decreases. However, if cooling
is too rapid, not enough of the search space will be explored, and the chances of
the search becoming stuck in local optima are increased. The basic algorithm,
for minimising an objective function, can be seen in Figure 2.

The name “Simulated Annealing” originates from the analogy of the tech-
nique with the chemical process of annealing - the cooling of a material in a
heat bath. If a solid material is heated past its melting point, and then cooled
back into a solid state, the structural properties of the cooled solid depend on
the rate of cooling. An algorithm proposed by Metropolis et al. [5] simulates
the change in energy of the system when subjected to a cooling process, until
it converges into a steady state. This algorithm was later proposed as the basis
of the search mechanism by Kirkpatrick et al. [6].

2.3 Evolutionary Algorithms

Evolutionary Algorithms use simulated evolution as a search strategy to evolve
candidate solutions, using operators inspired by genetics and natural selection.

Genetic Algorithms are probably the most well known form of Evolutionary
Algorithm, having been conceived by John Holland in the United States during
the late sixties. Genetic Algorithms are closely related to Evolution strategies,
which were developed independently at the about the same time in Germany by
Ingo Rechenburg and Hans-Paul Schwefel. For Genetic Algorithms, the search
is primarily driven by the use of recombination - a mechanism of exchange of in-
formation between solutions to “breed” new ones - whereas Evolution Strategies
principally use mutation - a process of randomly modifying solutions. Although

4

Select a starting solution s ∈ S

Select an initial temperature t > 0
Repeat

it← 0
Repeat

Select s′ ∈ N(s) at random
∆e← obj(s′)− obj(s)
If ∆e < 0

s← s′

Else
Generate random number r, 0 ≤ r < 1

If r < e−
δ

t Then s← s′

End If
it← it + 1

Until it = num solns

Decrease t according to cooling schedule
Until Stopping Condition Reached

Figure 2: High level description of a Simulated Annealing algorithm, for a prob-
lem with solution space S; neighbourhood structure N ; num solns, the number
of solutions to consider at each temperature level t; and obj, the objective func-
tion to be minimised

these different approaches were developed independently, and with different di-
rections in mind, recent work has incorporated ideas from both traditions -
narrowing the differences between the two. The discussion here, however, fo-
cuses on Genetic Algorithms. For more information on Evolution Strategies, see
references [7, 8, 9].

2.3.1 Genetic Algorithms

The name “Genetic Algorithm” comes from the analogy between the encoding of
candidate solutions as a sequence of simple components, and the genetic struc-
ture of a chromosome. Continuing with this analogy, solutions are often referred
to as individuals or chromosomes. The components of the solution are some-
times referred to as genes, with the possible values for each component called
alleles, and their position in the sequence the locus. Furthermore, the actual
encoded structure of the solution for manipulation by the Genetic Algorithm is
called the genotype, with the decoded structure known as the phenotype. For
many applications, the genotype is simply a string of binary digits (this issue
will be revisited in the context of test data generation). For example, a vector
of three integers <112, 255, 52> in the range [0, 255] might be represented as
<01110000, 11111111, 00110100>. For real values, a decision must made on
the precision to be used and what mapping should be used to the binary strings.
One possibility, for example, is to scale real values onto integer values according
to the required precision, and then use an integer encoding.

Genetic Algorithms maintain a population of solutions rather than just one
current solution. Therefore, the search is afforded many starting points, and the
chance to sample more of the search space than local searches. The population

5

is iteratively recombined and mutated to evolve successive populations, known
as generations.

The recombination operator takes two parent solutions and “breeds” them
to produce two new offspring. In one-point recombination, a single crossover
point is chosen at random. A recombination of two individuals <0, 255, 0> and
<255, 0, 255>, 000000001111111100000000 and 111111110000000011111111

in encoded form, with a single-point crossover chosen to take place at locus 12,
would take place as follows:

000000001111 111100000000
�

000000001111000011111111

111111110000 000011111111 111111110000111100000000

This produces two offspring - <0, 240, 255> and <255, 15, 0>.
Various selection mechanisms can be used to decide which individuals should

be used to create offspring for the next generation. Key to this is the concept
of the “fitness” of individuals. The fitness of an individual can be the value
obtained directly from the objective function, or this value scaled in some way.
The idea of selection is to favour the fitter individuals, in the hope of breeding
fitter offspring. However, too strong a bias towards the best individuals will
result in their dominance of future generations, thus reducing diversity and
increasing the chance of premature convergence on one area of the search space.
Conversely, too weak a strategy will result in too much exploration, and not
enough evolution for the search to make substantial progress.

Holland’s original Genetic Algorithm [10] used fitness-proportionate selec-
tion. In this selection mechanism, the expected number of times an individual
is selected for reproduction is proportionate to the individual’s fitness in com-
parison with the rest of the population. The process is analogous to the use of
a roulette wheel. Each individual is allocated a slice of the wheel in proportion
to its fitness. The wheel is then spun N times in order to pick N parents. At
the end of each spin, the position of the wheel marker denotes an individual
selected to be a parent for the next generation. Fitness-proportionate selec-
tion has difficulties in maintaining a constant selective pressure throughout the
search. Selective pressure is the probability of the best individual being se-
lected, compared to the average probability of selection of all individuals. In
the first few generations of the search, fitness variance is usually high. With
fitness-proportionate selection, selective pressure will also be high, since the
most highly-fit individuals will be granted the greatest opportunities to become
parents. This can lead to premature convergence. Also in later generations,
when fitness values amongst individuals are similar and the fitness variance of
the population is correspondingly low, selective pressure is also low. This can
lead to stagnation of the search.

Linear Ranking of individuals is a technique which proposes to circumvent
this problem. Individuals are sorted by fitness, with selection performed ac-
cording to rank, rather than through the direct use of fitness values. A linear
ranking mechanism with bias Z, where 1 < Z ≤ 2, allocates a selective bias
of Z to the top individual, a bias of 1.0 to the median individual, and 2 − Z

to the bottom individual. With a constant bias applied throughout the search,
selective pressure is more constant and controlled [11].

Tournament Selection [12] is a noisy but fast rank selection algorithm. The
population does not need to be sorted into fitness order. Two individuals are

6

chosen at random from the population. A random number, 0 < r ≤ 1, is then
chosen. If r is less than p (where p is the probability of the better individual
being selected), the fitter of the two individuals ‘wins’ and is chosen to be a
parent, otherwise the less fit individual is chosen. The competing individuals
are returned to the population for further possible selection. This is repeated N

times until the required number of parents have been selected. In all probability,
every individual is sampled twice, with the best individual selected for repro-
duction twice, the median individual once, with the worst individual remaining
unselected. The resulting selective bias is dependent on p. If p = 1, then in all
probability a ranking with a bias of 2.0 towards the best individual is produced.
If 0.5 < p ≤ 1, then the bias is less than 2.0.

Once the set of parents has been selected, recombination can take place to
form the next generation. Crossover is applied to individuals selected at random
with a probability pc (referred to as the crossover rate or crossover probability).
If crossover takes place, the offspring are inserted into the new population.
If crossover does not take place, the parents are simply copied into the new
population. After recombination, a stage of mutation is employed, which is
responsible for introducing or reintroducing genetic material into the search, in
the interests of maintaining diversification. This is usually achieved by flipping
bits of the binary strings at some low probability rate pm, which is usually less
than 0.01.

A high-level description of a Genetic Algorithm can be seen in Figure 3.
The initial population is generated at random, or seeded with pre-set individu-
als. The search is terminated when some stopping criterion has been met, for
example when the number of generations has reached some pre-imposed limit.

2.3.2 Advanced Encodings and Operators

Traditionally chromosomes are represented as a string of binary digits. A prob-
lem with standard binary encoding is the disparity that can occur between
solutions that are close to each other in unencoded solution space, but are far
apart in the encoded binary representation. For example in a standard binary
encoding the integer 7 is represented as 0111, yet 8 is represented as 1000.
Therefore, the crossover and mutation operators must change all four bits to
move from one integer value to the neighbouring other. An alternative is the
use of a Gray code. A Gray code is a binary representation where adjacent
integers are also Hamming distance 1 neighbours in Hamming space. For exam-
ple, in Standard Binary Reflected Gray Code, 7 is represented as 0100, and 8 as
1100. Empirical evidence has shown that Gray codes are generally superior to
standard binary encodings [13, 14].

Goldberg argues that binary representation decomposes the chromosome
into the largest number of smallest possible building blocks in order for the
recombination and mutation operators to work most effectively [15]. However,
this is disputed by Antonisse [16], who advocates the use of more expressive
alphabets. Davis [17] supports this view. For nine real-world applications us-
ing Genetic Algorithms over a variety of problem domains, Davis found that
real-valued representations always outperformed binary encodings (real-valued
encodings are also the representational choice of Evolution Strategies [9]). Of
course, the use of a real-valued encoding raises the question of how crossover
and mutation should work. The crossover operator only requires an underlying

7

Randomly generate or seed initial population P

Repeat
Evaluate fitness of each individual in P

Select parents from P according to selection mechanism
Recombine parents to form new offspring
Construct new population P ′ from parents and offspring
Mutate P ′

P ← P ′

Until Stopping Condition Reached

Figure 3: High level description of a Genetic Algorithm

sequence representation, and as such can operate as for binary encodings. Pos-
sibilities for the mutation operator include the replacement of a real number in
the chromosome with a new, randomly generated number. More advanced mu-
tation operators are based on real number creep. These operators sweep across
the chromosome, pushing values up and down by a small amount. In this way,
an element of local search is incorporated [17].

Genetic Algorithms have been successfully applied to a wide range of prob-
lems. For introductory texts, see references [15, 18]. For shorter overviews and
tutorials, see references [19, 9, 20].

3 Structural (White-Box) Testing

Structural, or white-box testing is the process of deriving tests from the inter-
nal structure of the software under test. This section summarises some of the
achievements in automating structural test data generation through the use of
metaheuristic techniques. These are compared with earlier related approaches.
Before this, some basic concepts are reviewed.

3.1 Basic Concepts

Many forms of structural testing make reference to the control flow graph (CFG)
of the program in question. A control flow graph for a program F is a directed
graph G = (N, E, s, e), where N is a set of nodes, E is a set of edges, and s and
e are respective unique entry and exit nodes to the graph. Each node n ∈ N

is a statement in the program, with each edge, e = (ni, nj) ∈ E, representing
a transfer of control from node ni to node nj . An example of a control flow
graph can be seen for a version of a triangle classification program in Figure
4. The triangle classification program is a benchmark used in many testing
papers. Assuming three non-zero, non-negative integer lengths for the sides of a
triangle, the program decides if the triangle is isosceles, scalene, equilateral, or
invalid. Nodes corresponding to decision statements (for an example an if or a
while statement) are referred to as branching nodes. In the triangle example,
branching nodes are nodes 1, 5, 9, 13, 16 and 18. Outgoing edges from these
nodes are referred to as branches. The condition determining whether a branch

8

is taken is referred to as the branch predicate. For the true branch from node 1,
the branch predicate is a > b.

An input vector I is a vector I = (x1, x2, . . . , xk) of input variables to the
program F . The domain of an input variable xi, 1 ≤ i ≤ k, is the set if all
values that xi can take on. The domain of the program F is the cross product
D = Dx1

×Dx2
× . . .×Dxk

where each Dxi
is the domain for the input variable

xi. A program input x is a single point in the k-dimensional input space D,
x ∈ D.

A path P through a control flow graph is a sequence P =< n1, n2, . . . , nm >,
such that for all i, 1 ≤ i < m, (ni, ni+1) ∈ E. A path is said to be feasible if
there exists a program input for which the path is traversed, otherwise the path
is said to be infeasible.

A definition of a variable v is a node which modifies the value of v, for ex-
ample an assignment statement or an input statement. The variable type is
defined in the triangle program at node 14. A use of a variable v is a node in
which v is referenced, for example in an assignment statement, an output state-
ment, or a branch predicate expression. In the triangle classification example,
the variables a and b are used at node 1.

A definition-clear path with respect to variable v is a path within which v

is not modified. In the triangle example, all paths from node 13 are definition-
clear with respect to variables a, b and c. However, no path from node 13 is
definition clear with respect to type.

The term control dependency is used to describe the reliance of a node’s
execution on the outcome at previous branching nodes [21]. A node z is post-
dominated by a node y in G if and only if every path from y to the exit node
e contains z. Node z post-dominates a branch (y, x) if and only if every path
from y to the exit node e through (y, x) contains z. The node z is control
dependent on y if and only if z post-dominates one of the branches of y, and z

does not post-dominate y. In the triangle example, node 17 is control dependent
on node 16, which in turn is control dependent on node 13. Node 13 itself has
no control dependencies, other than that of the external condition, entry, that
causes the procedure to be executed. This information can be captured by a
control dependence graph. Figure 5 shows the control dependence graph for the
triangle program.

The techniques now described have been implemented for experimentation
with a variety of programming languages. For consistency, however, all examples
here are presented in C.

3.2 Static Structural Test Data Generation

Static structural test data generation is based on analysis of the internal struc-
ture of the program, without requiring that the program is actually executed.

3.2.1 Symbolic Execution

Symbolic Execution [22, 23] is not the execution of a program in its true sense,
but rather the process of assigning expressions to program variables as a path
is followed through the code structure. The technique can be used to derive a

9

CFG
s

1

2-4

5

6-8

9

10-12

13

15

1416

18

1719

e

Node
s int tri_type(int a, int b, int c)

{

int type;

1 if (a > b)

2-4 { int t = a; a = b; b = t; }

5 if (a > c)

6-8 { int t = a; a = c; c = t; }

9 if (b > c)

10-12 { int t = b; b = c; c = t; }

13 if (a + b <= c)

{

14 type = NOT_A_TRIANGLE;

}

else

{

15 type = SCALENE;

16 if (a == b && b == c)

{

17 type = EQUILATERAL;

}

18 else if (a == b || b == c)

{

19 type = ISOSCELES;

}

}

e return type;

}

Figure 4: A triangle classification program and its corresponding control flow
graph

10

entry

1 5 9 13

2-4 6-8 10-12 14 15 16

17 18

19

Figure 5: Control dependence graph for the triangle classification program from
Figure 4

constraint system in terms of the input variables which describes the conditions
necessary for the traversal of a given path [24, 25, 26].

A forward traversal (or forward substitution) of a path, can be demonstrated
with the triangle classification program in Figure 4. Say the path < s, 1, 5, 9, 10,

11, 12, 13, 14, e > is to be executed. The input variables a, b and c are assigned
the constant variables i, j and k respectively. At nodes 1 and 5, the respective
false branches are to be taken. Therefore, the first and second constraints of
the constraint system for this path are:

(1) i <= j

(2) i <= k

The path also requires that the true branch be taken from node 9. This requires
the addition of a third constraint:

(3) j > k

The following expressions are assigned at nodes 10 through to 12 respectively:

t = j

b = k

c = t

A fourth and final constraint from node 13 then needs to be added. With a = i,
b now equal to k, and c = t = j, this becomes:

(4) i + k <= j

Backward path traversal is also possible, starting with the final node and
following the path in a reverse manner to the start node. The resulting con-
straint system is the same as for forward traversal, but no storage is required
for the intermediate symbolic expressions of variables. Forward traversal, how-
ever, allows for early detection of infeasible paths if the constraints generated

11

are inconsistent. Consider the path < s, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, . . . , e > which
requires that the true branches are taken from nodes 1 and 5, and that the
false branch from node 9 is taken. The constraints derived from the branching
predicates from the initial section of the path through to node 9 are:

(1) i > j

(2) j > k

(3) i <= j

Clearly constraints 1 and 3 are contradictory, indicating that the path is in-
feasible. Backward traversal would have meant symbolic execution of the path
backwards from e through to 13 first, and then backwards through the nodes to
node 1 before it would be possible to determine this fact.

Solutions to the constraint system are input data which will execute the
path. Constraint satisfaction problems are in general NP-complete [27]. How-
ever, if the constraints are linear, linear programming techniques can be applied
[24]. Heuristic methods can be used in to attempt the finding of a solution
where this is not the case. For example Boyer et al. [25] employ Hill Climbing.
Ramamoorthy et al. [26] use a trial and error procedure, monitoring the effects
of random-value assignments to variables in the constraint system. It is unlikely,
however, that this procedure would be efficient for non-trivial programs.

If the test goal is the execution of a particular statement, all paths leading to
the statement are explored. This is a problem in the presence of loops, due the
potential number of paths that may need to be examined. In Clarke’s test data
generator system [24], a path has to be manually selected by the tester. Many
generators symbolically simply execute the loop K times, where K is specified by
the tester or chosen by the system [26]. A large number of constraints generated
using this method, however, are not satisfiable.

Symbolic execution has several other problems, for example resolving com-
puted storage locations such as array subscripts.

a[i] = 0;

a[j] = 1;

if (a[i] > 0)

{

// perform some action

}

In the above code fragment, it is not known in general whether a[i] and a[j]

refer to the same element, because the variables i and j are not bound to specific
values. This information is important, since if i and j are equal, then the value
of a[i] in the condition is 1 and the branch predicate evaluates to true. If
not, the value of a[i] is 0 and the predicate evaluates to false. Boyer et al.
[25] and Ramamoorthy et al. [26] suggest possible solutions to this problem.
Both methods significantly increasing the complexity and memory requirements
of the Symbolic Execution system. A similar problem occurs with the use of
pointers. In the following example, it is not known if a and b refer to the same
location. Without this knowledge, the expression to assign to c can not be
determined.

*a = 0;

*b = 1;

c = *a;

12

Further difficulties include the handling of procedure calls. A common solu-
tion is to simply inline the called procedure into the calling routine [26]. However
the number of paths can grow very rapidly with this approach.

Although any computable function can be written without the use of arrays,
pointers or procedure calls, it is not normal practice for programmers to avoid
such constructs simply because of the flexibility they offer, and the role they
play in reducing the complexity of program code.

3.2.2 Domain Reduction

Domain reduction is a test data generation technique that was originally em-
ployed as part of Constraint-based Testing, developed by DeMillo and Offutt
[28]. Constraint-based Testing builds up constraint systems which describe the
given test goal. The solution to this constraint system brings about satisfaction
of the goal. The original purpose of Constraint-based Testing was to gener-
ate test data for mutation testing. Reachability constraints within the con-
straint system describe conditions under which a particular statement will be
reached. Necessity constraints describe the conditions under which a mutant
will be killed. Symbolic execution is used to develop the constraints in terms
of the input variables. Domain reduction is then used to attempt a solution to
the constraints. This procedure begins with the domains of each input variable.
These can be derived from type or specification information, or be supplied by
the tester. The domains are then reduced using information in the constraints,
beginning with those involving a relation operator, a variable and a constant,
and constraints involving a relation operator and two variables. Remaining
constraints are then simplified by back-substituting values. When no further
simplification is possible, the input variable with the smallest remaining do-
main is chosen, and a random value is assigned to it. The value of this variable
is then back-substituted throughout the constraint system, in order to allow
further reduction of the domains of remaining variables. If all variables can
be assigned values in this manner, then the constraint system will have been
satisfied; otherwise the variable assignment stage is repeated, in the hope of this
time successfully selecting appropriate random numbers for the variables.

With Constraint-based Testing, constraints must be computed before they
are analysed. Since these constraints are derived using Symbolic Execution,
the method suffers from similar problems involving loops, procedure calls and
computed storage locations. Dynamic Domain Reduction was introduced by
Offutt et al. [29] with the intent of addressing some of these issues. Although
called Dynamic Domain Reduction, the technique still has the characteristic
that the program is not executed with real input values. As with standard Do-
main Reduction, Dynamic Domain Reduction starts with the domains of the
input variables. However, in contrast to standard Domain Reduction, these
domains are reduced “dynamically” during the Symbolic Execution stage, us-
ing constraints composed from branch predicates encountered as the path is
followed. If the branch predicate involves a variable comparison, the domains
of the input variables responsible for the outcome at the decision are split at
some arbitrary “split point”, rather than assigning random input values. For
example if the initial domains of two input variables y and z are [-10...10] and
a branch predicate y < z is encountered which needs to be executed as true,
the domains might be split leaving the domain of y to be [-10...0] and z to be

13

[1...10]. A back tracking procedure can be used to correct any spurious split
points if the execution can only proceed so far down the specified path, and is
unable to continue further due to a bad decision made earlier in the reduction
process.

Despite setting out to deal with problems traditionally encountered by tech-
niques based on Symbolic Execution, Dynamic Domain Reduction still suffers
with difficulties due to computed storage locations and loops. Furthermore, it
is not clear how domain reduction techniques handle non-ordinal variable types,
such as enumerations.

3.3 Dynamic Structural Test Data Generation

As has already been discussed, the relationship between input data and internal
variables for structural test data generation is difficult to analyse statically in the
presence of loops and computed storage locations. Dynamic methods execute
the program in question with some input, and then simply observe the results
via some form of program instrumentation. Since array subscripts and pointer
values are known at run-time, many of the problems associated with Symbolic
Execution can be circumvented.

3.3.1 Random Testing

Random Testing simply executes the program with random inputs and then
observes the program structures executed. This technique works well for simple
programs. However structures that are only executed with a low probability
are often not covered. Consider the triangle classification example once more
(Figure 4). The true branch from node 16 requires that the three input values
for a, b and c are all equal. Such a branch is unlikely to be executed by chance.
Even if the domain of integer values for each variable were limited to values
between 1 and 100, the probability of all three variables being selected with the
same value is 1 in 10,000. In such cases a more directed search technique is
required to locate test data.

3.3.2 Applying Local Search

Miller and Spooner [30] were the first to combine the results of actual executions
of the program with a search technique. Their method was originally designed
for the generation of floating-point test data, however the principles are more
widely applicable. The tester selects a path through the program, and then
produces a straight-line version of it, containing only that path. Branching
statements are then replaced with a “path constraint” of the form ci = 0;
ci > 0; or ci ≥ 0; where ci is an estimate of how close the constraint is to
being satisfied. For example, a branch predicate of the form a == b might be
rearranged into the path constraint abs(a − b) = 0. Take the triangle example
and the execution of the path < s, 1, 5, 9, 10, 11, 12, 13, 14, e > again. The
straight-line program with its respective path constraints would be re-arranged
as follows:

14

int tri_type(int a, int b, int c)

{

int type;

(c1 = (b− a)) >= 0
int t = a; a = b; b = t;

(c2 = (c− a)) >= 0
(c3 = (b− c)) > 0
(c4 = (c− (a + b))) >= 0
type = NOT_A_TRIANGLE;

}

Note that the value of c2, c3 and c4 are dependent on the computations
between c1 and c2. However, this information is not required for the derivation
of the path constraints, as it would be for the process of test data generation
using Symbolic Execution.

Using these constraints, a function f is constructed. The value of f provides
a real-valued estimate of how close all of the constraints are to being satisfied,
being negative when one or more of the constraints remains unsatisfied, and
positive when all of the constraints are satisfied. Input values of a, b and c

are then sought through the use of numerical maximisation techniques, which
attempt to push the value of f closer and closer to zero, in the hope of eventually
making it positive.

Under normal conditions, execution of the complete path is not possible
until branch predicates encountered along the path are evaluated in the required
manner. However, in the straight-line version of the program, it is possible for
run-time errors to occur which would not have been possible in the original
program. In the following segment of code, if execution is allowed to proceed
down the true branch with values of i less than zero, or greater than size, an
error will be induced, because the array index used in the assignment statement
will be out of bounds:

if (i >= 0 && i < size)

{

a[i] = 0;

}

It was not until 1990 that the ideas of Miller and Spooner were extended by
Korel [31] for Pascal programs. In this work, the test data generation procedure
worked on an instrumented version of the original program without the need for
a straight-line version to be produced. The search targeted the satisfaction of
each branch predicate along the path in turn, circumventing issues encountered
by the work of Miller and Spooner. To execute some desired path, the program is
initially executed with some arbitrary input. If during execution an undesired
branch is taken - one which deviates from the desired path - a local search
for program inputs is invoked, using an objective function derived from the
predicate of the desired, alternative branch. This objective function describes
how “close” the predicate is to being true. The value obtained is referred to as
the branch distance.

Take the triangle example and the execution of the path < s, 1, 5, 9, 10,

11, 12, 13, 14, e > again. If the function is executed with the program input
(a=10, b=20, c=30), control flow successfully follows the false branches from

15

Relational predicate f rel

a > b b− a <

a ≥ b b− a ≤
a < b a− b <

a ≤ b a− b ≤
a = b abs(a− b) =
a 6= b −abs(a− b) <

Table 1: Korel’s objective functions for relational predicates

nodes 1 and 5. However control flow diverges away from the intended path
down the false branch at node 9. At this point the local search is invoked to
change the program inputs so that the alternative true branch is taken. If, in
general, the branch predicate is assumed to be of the form a op b, where a

and b are arithmetic expressions and op is a relational operator, an objective
function of the form f rel 0 is derived, where f and rel are given in Table 1.
The function is to be minimised, being positive (or zero if rel is ‘<’) when the
current branch predicate for the required branch is false, and negative (or zero
if rel is ‘=’ or ‘≤’) when it is true. For the predicate of the true branch from
node 9, the objective function is c - b > 0. The value of this function for the
program input (a=10, b=20, c=30) is 30 - 20 = 10. The program must be
instrumented so that objective values can be computed. This can be performed
within the branching expression, for example as follows:

if (eval_obj(9, b, c))

{

...

Here, the program function eval_obj reports branch distances at node 9
using the local values of b and c. This function will then return a boolean value
corresponding to the evaluation of the original branching expression, in order
for program execution to resume as normal.

The local search for deriving input values in accordance with the objective
function is known as the alternating variable method. Each input variable is
taken in turn and its value adjusted, keeping the other variable values constant.
The first stage of manipulating an input variable is called the exploratory phase.
This probes the neighbourhood of the variable by increasing and decreasing its
original value. If either move leads to an improved objective value, a pattern
phase is entered. In the pattern phase, a larger move is made in the direction
of the improvement. A series of similar moves is made until a minimum for
the objective function is found for the variable. The next input variable is then
selected for an exploratory phase.

Return to the triangle example again, for which execution had diverged from
the intended path at node 9. Decreases and increases of a have no effect on the
objective value. Therefore b is chosen. A decrease of b leads to a worse objective
value, but an increase leads to an improvement. The pattern phase is entered
for b, which will be increased until b > c. Suppose the value 31 is reached.
The new input vector is now (a=10, b=31, c=30). Control flow now proceeds
through branching node 9 as desired, however execution now diverges away at

16

void nested_example(int a, int b, int c)

{

if (a == b)

if (b == c)

if (c < 0)

// target

}

Figure 6: Example with nested structures

node 13, since the value of a + b at the node is greater than the value of c. The
local search is invoked again, this time to adjust the input values so that the
true branch is taken from node 13, whilst maintaining the already correct sub-
path up to this node. The new objective function, derived from the true branch
predicate, is (a + b) - c <= 0. A decrease of the input value of b leads to a
violation of the sub-path up to node 9, yet an improved value of the objective
function is found for an increase of b (since the internal values of b and c are
swapped at nodes 10-12). Eventually the input vector (a=10, b=40, c=30)

will be found. This input vector evaluates branching node 13 as true, and the
complete path is executed.

As with all local searches, the final result is dependent on the starting so-
lution. Consider the example of Figure 6. If the input is initially selected as
(a=10, b=10, c=10), control flow proceeds directly down to the final branch-
ing node. However the variable c can not be changed to a value less than 0,
because the already successful sub-path up to the final branching node will be
violated. In this case, the search will fail.

Heuristic search methods have the potential to make moves through variable
values that can not lead to an improvement in the value of the current cost
function. This can lead to many wasteful and costly executions of the program.
In the triangle example, changing the value of the input variable c does not
have an effect on branching node 1. In order to make the search more efficient,
Korel’s work makes use of extra information derived from the program, in the
form of an “influences” graph. An influences graph is used to detect which input
variables are able to influence the outcome at the current branching node, as
determined using dynamic data flow analysis. A risk analysis of input variables
is also undertaken in order to decide if they could potentially violate the already
successful sub-path. For example at node 5, it is more attractive to manipulate
c rather than a or b, since changing a or b may change the current successful
sub-path through node 1.

Gallagher and Narasimhan [32] built on Korel’s work for programs written
in Ada. In particular, this was the first work to record support for the use of
logical connectives within branch predicates. For predicates of the form A and

B, the overall objective value is formed from the summation of the individual
objective values of the expressions A and B. For predicates of the form A or

B, the objective value is the minimum value of the individual objective values
of the expressions.

17

3.3.3 The Goal-Oriented Approach

In his paper published in 1992, Korel developed what became known as the Goal-
Oriented Approach [33]. All of the techniques concentrate on the execution of a
path. For fulfilling a structural coverage criterion like statement coverage, this
means a path has to be selected for each individual uncovered statement. The
Goal-Oriented Approach removes this requirement. This is achieved through the
classification of branches in the control flow graph of the program with respect
to a target node as either critical, semi-critical or non-essential. This can be
performed automatically on the basis of the program’s control flow graph.

For branches leaving a node on which the target is control dependent, a
critical branch is the edge which leads the execution path away from the target
node. If control flow is driven down a critical branch, there is no prospect of the
target being reached. Therefore, an objective function, of the form outlined in
the previous section, is associated with the branch predicate of the alternative
branch. The alternating variable search method is then employed to seek inputs
so the alternative branch is taken instead. If the required inputs cannot be
found, the overall process terminates, with the target remaining unexecuted.

A semi-critical branch is one which leads to the target node, but only via
the backward edge of a loop. The alternative branch from the same branching
node leads directly to the target node. In the case where the execution is driven
down a semi-critical branch, the alternating variable method is again invoked to
seek inputs for the execution of the alternative branch. If suitable input values
cannot be found, however, the process does not terminate. Execution is allowed
to flow down the semi-critical branch, in the hope of taking the alternative
branch in the next iteration of the loop.

Finally, a non-essential branch is neither critical or semi-critical. Non-
essential branches do not determine whether the target will be reached, regard-
less of their position in the control flow graph. Therefore, execution is allowed
to proceed unhindered through these branches.

Take the example of Figure 7, with the target being the execution of node
5. The classification of each branch can be seen from the control flow graph
in Figure 8. The false branches from nodes 1 and 3 are critical since node 5
cannot be reached if they are executed. The false branch from condition 4 is
semi-critical, because although control flow diverges away from the target at
this point, the target may still be reached in the next iteration of the loop. If
the input vector is (a=0) the false branch from condition 1 is taken, and so
the search procedure is invoked to change the value of a. Control flow proceeds
through down the true branch from node 1, but from node 4 the false branch is
taken. However, the search can not change the outcome at this branch, and so
the flow of control is allowed to continue around the loop a further nine times
upon which the true branch from node 4 is taken, and the target is reached.

As the Goal-Oriented method also employs the alternating variable local
search, it suffers from similar problems to those of Korel’s original approach.
The removal of the requirement to select a path, although relieving some effort
on behalf of the tester, introduces new ways in which the test data search can
fail. Take the example of Figure 9 and the execution of the true branch from
node 4. The true branch is only taken for objective values less than or equal
to zero. Consider what happens when the initial input vector is selected so
that a is less than zero (approximately half of the input domain). With such

18

CFG
Node

s void goal_oriented_example(int a)

{

1 if (a > 0)

{

2 int b = 10;

3 while (b > 0)

{

4 if (b == 1)

{

5 // target

}

6 b --;

}

}

e return;

}

Figure 7: Example for the Goal-Oriented Approach

a starting point, the critical false branch from node 4 is taken. The search
will fail, since small exploratory moves of a will have no effect on the objective
function associated with this condition, which is concerned only with the value
of b. The landscape of the objective function in this region of the search space
is flat (Figure 10).

In this example, one could attribute the failure to the use of a local search
technique. A global search technique such as a Genetic Algorithm is likely to
sample the input domain more thoroughly and find the required value of a. The
local search could incorporate a series of restarts. However, it may be that the
required path up to the target node is found with some very low probability.
Even Genetic Algorithms will have trouble with these search spaces (see Section
3.5.4). Korel noted that this situation could be avoided if the data dependencies
of the test goal were also taken into account by search, and attempted to address
this issue with the Chaining Approach.

3.3.4 The Chaining Approach

The Chaining Approach [34, 35] uses the concept of an event sequence as an
intermediate means of deciding the type of path required for execution up to
the target node. An event sequence is basically a succession of program nodes
that are to be executed. The initial event sequence consists of just the start
node and target node. Extra nodes are then inserted into this event sequence
when the test data search encounters difficulties.

An event sequence can be formally described as a sequence of events <

e1, e2, · · · ek > where each event is a tuple ei = (ni, Ci) where ni ∈ N is a
program node and Ci is a set of variables referred to as a constraint set [35].

19

s

1

2

N

e

C

3

4

N

C 5

N

6

S

Figure 8: Control flow graph and branch classification for program in Figure 7.
Node 5 is the target. C represents a critical branch; S, a semi-critical branch;
and N , a non-essential branch

20

CFG
Node

s void chaining_approach_example(int a)

{

1 int b = 0;

2 if (a > 0)

{

3 b = a;

}

4 if (b >= 10)

{

5 // target

}

// ...

}

Figure 9: Example for the Chaining Approach

-15

-10

-5

0

5

10

15

-20 -15 -10 -5 0 5 10 15 20

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

a

Figure 10: Objective function landscape for execution of node 4 as true for
Figure 9

21

For every two adjacent events ei = (ni, Ci) and ei+1 = (ni+1, Ci+1), no variables
in the constraint set should be modified. That is to say a definition-clear path
must be taken from ni to ni+1 with respect to each variable in Ci.

For the example in Figure 9, the target is the execution of node 5. The
initial event sequence is therefore:

< (s, φ), (5, φ) >

For every two adjacent events ei = (ni, Ci) and ei+1 = (ni+1, Ci+1) in each
event sequence E, the branches of the program are classed as either critical,
semi-critical or non-essential. If there does not exist a definition-clear path with
respect to the variables in Ci from ni to ni+1 through branch (p, q), where p and
q are program nodes, yet such a path does exist from the alternate branch from
p, the branch (p, q) is declared critical. A branch (p, q) is semi-critical if it is
not critical, ni+1 is control dependent on p, and there does not exist an acyclic
definition-clear path from p to ni+1 with respect to Ci though (p, q). All other
branches are declared as non-essential. As with the Goal-Oriented approach, the
flow of control should not take a critical branch. If one is taken, the alternating
variable method is used to try and change the execution at the branching node.
Semi-critical branches are preferably avoided, and non-essential branches are
ignored.

Recall from the last section, the search for inputs to execute the branching
node 4 as true for the program of program of Figure 9 can fail when the value
of a is negative, e.g. -10. In executing the initial event sequence, the false
branch from node 4 is critical. However, the local search is unable to find an
input value of a so that the alternative true branch is taken, since exploratory
moves from -10 yield no change in values of the objective function associated
with this branch. When inputs can not be found to change the flow of control
so that a critical branch (p, q) is avoided, p is “declared” as a problem node, for
which new event sequences can be generated. In such instances the Chaining
Approach looks for last definition statements of variables used at the problem
node. In the example, the variable used at node 4 is the variable b. This
variable is defined at nodes 1 and 3. Therefore, two different event sequences
are generated, one inserting an event where node 1 should be executed and one
where node 3 should be executed, i.e.:

1) < (s, φ), (1, {b}), (4, φ), (5, φ) > and
2) < (s, φ), (3, {b}), (4, φ), (5, φ) >

The constraint set for both events includes the variable b, since a reassign-
ment to b before node 4 would destroy the effect of the inserted event node.

The first event sequence executes exactly the same path for which inputs
could not be found. The outcome, however, is different for the second sequence.
Assume the input vector is still (a = -10). Control flow is driven down the
critical false branch at node 2. The alternating variable method is used to
try and amend this. Increments in a have a positive effect on the objective
function associated with the true branch. Eventually the input (a = 1) is
found. Flow of control is now driven down the critical false branch at node 4.
However, exploratory moves of a now have an effect on the objective function
associated with this branch. An increment of a leads to an improvement in the
cost function, until eventually the vector (a = 10) can be found.

22

The Chaining Approach organises the generated event sequences in a tree. At
the root of the tree is the initial event sequence. The first level contains the event
sequences generated as a result of the first problem node. In more complicated
examples, further problem nodes could be encountered on route to executing
some last definition node inserted into the sequence. In such instances the
Chaining Approach backtracks further, and looks for last definition statements
for variables used at these new problem nodes. These additional event sequences
are added to the tree. The tree is explored in a depth-first fashion, to some
specified depth limit.

The Chaining Approach can generate test data for a larger class of programs
than the Goal-Oriented approach. However, search times increase, and the local
search employed can still become trapped in difficult search spaces.

3.4 Applying Simulated Annealing

The work of Tracey and co-authors [36, 37] applies Simulated Annealing to
structural test data generation, in the hope of overcoming some of the problems
associated with the application of local search. In this work, test data can be
generated for specific paths, or for specific statements or branches.

In order to apply Simulated Annealing, a neighbourhood structure has to
be defined for the various different input variable types. For integer and real
variables, the neighbourhood is simply a defined range of values around each
individual value. Since the ordering of values is not significant for boolean and
enumerated types, all values for these variables are considered as neighbours.

The objective function is simply the branch distance of the required branch
when control flow diverges away from the intended path, or away from the
target structure down a critical branch. The objective functions used (Table 2)
are in principle identical to those employed by Korel, except the use of a non-
zero positive failure constant K - which is always added if the branch predicate
evaluates to false - removes the need to use a relation rel within the function.
In this way, the objective function always returns a value above zero if the
predicate is false, and zero when it is true.

In order to reduce the chances of the search becoming stuck in local op-
tima, Tracey drops the constraint employed by Korel that the newly generated
solution must conform to an already successful sub-path. However, the means
of doing this results in the search losing some information about its progress.
This is because solutions which diverge away from the target down earlier crit-
ical branches are assigned similar objective values to those diverging away at a
later stage. This can be demonstrated with the example of Figure 11. For the
target statement at node 3, the false branches from nodes 1 and 2 are critical.
Under Korel’s scheme, if the current solution is (i=10, j=-1), diverging down
the critical branch from node 2, the vector (i=9, j=-1) would not be given
consideration, because the already successful sub-path up to node 2 is violated.
This is due to the fact that this input vector takes the earlier critical branch at
node 1. However in Tracey’s method, a move can take place between solutions,
and furthermore, the solutions are rewarded identical objective values - since
the distance values taken at the different branching nodes are the same.

23

Relational Predicate Objective Function obj

Boolean if TRUE then 0 else K

a = b if abs(a− b) = 0 then 0 else abs(a− b) + K

a 6= b if abs(a− b) 6= 0 then 0 else K

a < b if a− b < 0 then 0 else (a− b) + K

a ≤ b if a− b ≤ 0 then 0 else (a− b) + K

a > b if b− a < 0 then 0 else (b− a) + K

a ≥ b if b− a ≤ 0 then 0 else (b− a) + K

¬a Negation is moved inwards and propagated over a

Table 2: Tracey’s objective functions for relational predicates. The value K,
K > 0, refers to a constant which is always added if the term is not true

CFG
Node

s void landscape_example(int i, int j)

{

1 if (i >= 10 && i <= 20)

{

2 if (j >= 0 && j <= 10)

{

3 // target statement

// ...

}

}

}

Figure 11: Example for comparing objective functions

24

Structure-Oriented

Evolutionary Structural Test Data Generation

Coverage-Oriented
(Watkins 1995, Roper 1997)

Branch-Distance-Oriented
(Xanthakis et al. 1992, Jones et al. 1996,

McGraw et al. 1997)

Combined Control and Branch Distance Approaches
(Tracey 2000, Wegener et al. 2001)

Control-Oriented
(Pargas et al. 1999)

Figure 12: Classification of Dynamic Structural Test Data Generation Tech-
niques using Evolutionary Algorithms

3.5 Applying Evolutionary Algorithms

The application of Evolutionary Algorithms to test data generation is often
referred to in the literature as Evolutionary Testing (for example References [38,
39, 40]). The first work applying Evolutionary Algorithms to generate structural
test data is that of Xanthakis et al. [41]. Up until this point, work on structural
test data generation had largely focused on finding input data for specific paths
or individual structures with programs, such as branches or statements. Initially,
however, techniques using Genetic Algorithms took slightly different directions.

3.5.1 A Classification of Techniques

Different techniques applying Evolutionary Algorithms to structural test data
generation can be categorised on the basis of objective function construction
(Figure 12).

Coverage-Oriented Approaches reward individuals on the basis of covered
program structures. In the work of Roper [42], an individual is rewarded on
the basis of the number of structures executed in accordance with the coverage
criterion. Under this scheme, however, the search tends to reward individuals
that execute the longest paths through the test object . Guidance is not given for
structures that are unlikely to be covered by chance, for example deeply nested
structures, or branch predicates that are only true when an input variable has
to be a specific value from a large domain.

The work of Watkins [43] attempts to obtain full path coverage for programs.
The objective function penalises individuals that follow already covered paths,
by assigning a value that is the inverse of the number of times the path has
already been executed during the search. The direction of the search, there-
fore, is under constant adaptation. However, the penalisation of covered paths,
in itself, provides little guidance to the discovery of new, previously unfound
paths. The results show that in comparison with Random Testing, the Genetic
Algorithm approach required an order of magnitude fewer tests to achieve path

25

coverage for two experimental programs. However, both of these programs are
of a simple nature, containing no loops. Furthermore, the input domains were
artificially restricted for the search.

In general, the problem with coverage-oriented approaches is the lack of
guidance provided for structures which are only executed with values from a
small portion of the overall input domain. Therefore, it is difficult to expect full
coverage with these techniques for any non-trivial program.

Structure-Oriented Approaches follow similar lines to the earlier work of Ko-
rel, and take a ‘divide and conquer’ approach to obtaining full coverage. A
separate search is undertaken for each uncovered structure required by the cov-
erage criterion. Structure-oriented techniques differ in the type of information
used by the objective function. These can be categorised as either Branch-
Distance-Oriented, Control-Oriented, or Combined approaches.

Branch-Distance-Oriented approaches exploit information from branch pred-
icates, in a similar style to earlier work by Miller and Spooner, and later Korel.
In the work of Xanthakis et al. [41], Genetic Algorithms are employed to gener-
ate test data for structures not covered by random search. A path is chosen, and
the relevant branch predicates are extracted from the program. The Genetic
Algorithm is then used to find input data that satisfies all the branch predicates
at once, with the objective function summing branch distance values. However,
this scheme suffers from similar problems suffered by the work of Miller and
Spooner. Furthermore, the need to select a path is a burden on the tester. In
the work of Jones et al. [44] for obtaining branch coverage, a path does not need
to be selected. The objective function is simply formed from the branch distance
of the required branch. However, no guidance is provided so that the branch
is actually reached within the program structure in the first place. McGraw et
al. [45] alleviate this problem for condition coverage, by delaying an attempt
to satisfy a condition within a branching expression until previous individuals
have been already found which reach the branching node in question. The initial
generation for the target condition is then seeded with these individuals. This
scheme, however, is inefficient if test data is required for the coverage of one,
specific condition.

The earlier work of Korel had already removed the need for the tester to
select a path. Since new test data considered by the search had to conform
to the successful sub-path already found, explicit control-oriented information
regarding the target did not need to be included in the objective function.
However, such rigid constraints increase the chances of the search becoming
stuck in local optima, and it would be better if more feedback could be provided
via the objective function. This is the problem addressed by Control-Oriented
approaches.

With Control-Oriented approaches, the objective function considers the branch-
ing nodes that need to be executed in some desired way in order to bring about
execution of the desired structure. The approach of Jones et al. [44] to loop
testing falls into this category. Here, the objective function is simply the differ-
ence between the actual and desired number of iterations. In the work of Pargas
et al. [46], for statement and branch coverage, the control dependence graph of
the test object is used. The sequence of control dependent nodes is identified
for each structure. These are the branching nodes that must be executed with
a specific outcome in order for the structure to be reached. The objective value

26

-60
-40

-20
0

20
40

60

i

-60
-40

-20
0

20
40

60

j

0

0.5

1

1.5

2

Objective Function Value

Figure 13: Objective function landscape of Pargas et al. [46] for example of
Figure 11

of an individual is simply assigned as the number of control dependent nodes
executed as intended. Recall that the branch leading away from the target at
a control dependent node is identified as a critical branch in Korel’s work. The
measure used by Pargas et al. is therefore equivalent to the number of critical
branches successfully avoided by the individual.

The problem with using control information only for the purposes of the ob-
jective function are the plateaux that form on the objective function landscape.
The objective function gives no guidance as to how to change the flow of execu-
tion at control dependent nodes, since no distance information is exploited from
branch predicates. Take the simple example of Figure 11. The target is node
3, which is control dependent on node 2, which in turn is control dependent on
node 1. Let dependent be the number of control dependent nodes for the cur-
rent target, and executed the number of control dependent nodes successfully
executed in the required manner. A minimising version of the objective function
of Pargas et al. , can be computed as (dependent− executed). However, in this
scheme, every individual diverging away from the target at node 1 receives an
objective value of 2, with every individual diverging at node 2 receiving a value
of 1. The landscape for the minimising version of the objective function for the
example is seen in Figure 13. This landscape has three plateaux. For individu-
als not satisfying one or more of the branch predicates, no guidance is given as
to how to descend down the landscape to solutions that are closer to executing
the target. Along these horizontal planes, the search becomes random.

Combined approaches make use of both branch distance and control infor-

27

-60
-40

-20
0

20
40

60

i

-60
-40

-20
0

20
40

60

j

0

10

20

30

40

50

60

70

Objective Function Value

Figure 14: Objective function landscape of Tracey [47] for example of Figure 11

-60
-40

-20
0

20
40

60

i

-60
-40

-20
0

20
40

60

j

0

0.5

1

1.5

2

Objective Function Value

Figure 15: Objective function landscape of Wegener et al. [48] for example of
Figure 11

28

mation for the objective function. The work of Tracey [47] builds on previous
work which used Simulated Annealing. The strategy for combining both tech-
niques is as follows. The control dependent nodes for the target structure are
identified. If an individual takes a critical branch from one of these nodes, a
distance calculation is performed using the branch predicate of the required,
alternative branch. This is computed using the functions of Table 2 (and Table
3 for and and or logical connectives). Tracey then uses the number of suc-
cessfully executed control dependent nodes to scale branch distance values. Let
branch dist be the branch distance calculation performed at the branching node
where a critical branch was taken. The formula used by Tracey for computing
the objective function is:

(

executed

dependent

)

× branch dist

Unfortunately, this scheme can lead to unnecessary local optima in the objective
function landscape. For the example of Figure 11, this is evident by the valleys
in the objective function landscape along i = 9 and i = 21 where −3 ≤ j and
j ≥ 13, as seen in Figure 14.

Wegener et al. [48, 38] map branch distance values branch dist logarithmi-
cally into the range [0, 1] (call this m branch dist). The minimising objective
function is zero if the target structure is executed, otherwise, the objective value
is computed as:

(dependent− executed− 1) + m branch dist

The (dependent− executed− 1) sub-calculation is referred to as the approx-
imation level or, perhaps more appropriately, the approach level attained by
the individual [48, 38]. The resulting objective function landscape has a similar
form to that of Pargas et al. (Figure 15). However, the extra information pro-
vided by the branch distance calculation prevents the formation of plateaux at
each approach level. For the example, the result is a sweeping landscape from
each level to the next level downwards.

3.5.2 Objective Functions for Different Structural Coverage Criteria

The work detailed so far for structural test data generation has mainly ad-
dressed statement, branch or condition coverage. In the work of Wegener et
al. [48], several new Structure-Oriented objective functions were introduced for
previously unexplored coverage types. For this purpose, structural criteria are
divided into four categories:

• node-oriented

• path-oriented

• node-path-oriented

• node-node-oriented

The basic form of the (minimising) objective function is:

approach level + m branch dist

29

The strategy in which approach level and m branch dist are computed
varies according to the coverage type in question.

Node-oriented criteria aim to cover specific nodes of the control flow graph,
for example statement coverage. The strategy for node-oriented methods was
discussed in the last section. The approach level is calculated on the basis
of the number of control dependent nodes for the target lying between nodes
covered by the individual and the target node itself. At the point where control
flow diverges down a critical branch, the branch distance is calculated using the
predicate of the alternative branch.

Path-oriented criteria require the execution of specific paths through the
control flow graph. There are two possible ways to calculate the objective
function. One method is to calculate the approach level on the basis of the
length of identical initial path section, with the branch distance calculation
performed using the predicate at the first diverging branch. An alternative
strategy considers all identical path sections for the approach level, with the
branch distance calculation an accumulation of distance calculations made at
each point of divergence from the intended path. Wegener et al. report superior
results with the latter method [48].

Node-path-oriented criteria include branch coverage and LCSAJ (linear code
sequence and jump) coverage, where a node and a specific subsequent path must
be executed. The objective function is a combined node-oriented and path-
oriented calculation. Calculations for individuals not reaching the initial node
are treated as for node-oriented criteria. For individuals reaching the initial
node, a path-oriented calculation is additionally applied.

Node-node-oriented criteria aim to execute a certain sequence of nodes through
the control flow graph, without the specification of a concrete path between each
node. This includes data-flow-oriented coverage types such as all-defs and all-
uses criteria. In this case, the objective function is a cumulative node-oriented
strategy. Calculations for individuals failing to reach the first node are carried
out as for node-oriented methods, with individuals reaching the subsequent node
having additional calculations carried out at these further nodes.

3.5.3 Control-Related Problems for Objective Functions

The provision of guidance to structures nested within loops presents a problem
which can be demonstrated with Figure 16. The target is the execution of node
3. However, node 3 is not control dependent on node 2, because paths taking
the false branch from node 2 can still execute node 3 in subsequent iterations of
the loop. Consequently, the search does not receive guidance regarding the fact
that the true branch from node 2 needs to be taken for the target statement
to be reached. This results in poor search performance. The approach taken
by Baresel et al. [49] is to treat branches that miss the target in iterations of
the loop as if they were critical branches (recall that these branches are classed
as semi-critical in Korel’s work). Thus, node 3 is treated as if it were control
dependent on node 2. This also appears to be the approach taken by Tracey
[47]. However, this leads to penalisation of individuals in the first iteration of
the loop. In the example, if the input variable i is 1, the objective value is taken
in the first iteration, when n is 0. However, the individual is closest to executing
the target statement in the last iteration of the loop, when n is 10. Furthermore,
when the input value of i is 0, the individual will be deemed to have missed

30

CFG
s

1

2

e

3

Node
s void loop_example(int i)

{

int n;

1 for (n=0; n <= 10; n++)

{

2 if (n == 10 && i == 0)

{

3 // target statement

}

}

e }

Figure 16: Loop example, with control flow graph

the target, when the target is actually executed in the last iteration of the loop.
In order to circumvent this problem, Tracey [47] examines the branch distance
during each iteration of the loop and uses the minimum branch distance obtained
for the purposes of computing the final objective value.

A further problem is the assignment of approach levels for some classes
of program with unstructured control flow. Baresel et al. [49] present the
example of Figure 17. The target of the search is node 6. However, there are
three different control dependent paths through to node 6 from node 1 (Figure
18), and two control dependent paths from node 2. Consequently there are
two approach level possibilities for node 1 (since two of the paths are of the
same length), and two possibilities for node 2. Two plausible solutions to this
problem include optimistic and pessimistic approach level allocation strategies.
In an optimistic strategy, a control dependent branching node is allocated its
approach level on the basis of the shortest control dependent path from itself
to the target node. In this way node 2 is assigned an approach level of 1 on the
basis of the direct path through to 6, thereby receiving the same level as node
5. In a pessimistic strategy, a branching node is allocated its approach level
on the basis of the longest control dependent path to the target node. In this
scheme node 2 would be assigned an approach level of 3 on the basis of the path
through nodes 3 and 5. Both optimistic and pessimistic schemes were put to
the test in initial experiments by Baresel et al. [49]. Whilst they show that the
different schemes have different effects on the progress of the search, they were
unable to conclude from the experiments which strategy works best in general.
Thus, this problem is still open to question.

3.5.4 Branch-Distance-Related Problems for Objective Functions

Although global search techniques are more robust than local searches in ob-
jective function landscapes containing local optima and plateaux, they will still
struggle in hostile search landscapes containing large plateaux or several local
optima. In particular, plateaux can be induced on the search space through the
use of “flag” variables in branch predicates. A flag is simply a boolean variable.
When flag variables are involved in branch predicates, the resulting objective

31

CFG
Node

switch(a)

{

1 case 1:

2 if (cond_1)

return;

3 if (cond_2)

break;

4 case 2:

5 if (cond_3)

break;

return;

}

6 // target statement

Figure 17: Example to demonstrate problems with unstructured control flow

6

e

s

1

2

4

3

5

6

4

entry

1

2

5

3

a) Control flow graph b) Control dependence graph

Figure 18: Control graphs for example Figure 17

32

flag = (d == 0);

if (flag)

result = 0;

else

result = n / d;

Figure 19: Flag example

0

2

4

6

8

10

-10 -5 0 5 10

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

d

Figure 20: Objective function landscape for the flag example

function landscape consists of two plateaux - one for the true value and one for
the false value. In such situations, the evolutionary search performs no better
than a random search.

Figure 19 demonstrates this with an example. For the true branch to be exe-
cuted, the flag must be true. However, the objective function gives no guidance
to how the true value is brought about. The plateau induced on the objective
function landscape can be seen in Figure 20.

Bottaci [50] proposes a solution for a special case of flag problems similar
in form to the example of Figure 19, where the value of the flag is determined
by a predicate. In this work it is suggested that the predicate used for the
distance calculation is substituted by the predicate used in assigning the flag
value. Essentially the objective function landscape becomes that Figure 21,
which provides more guidance to the required test data. However, flags are
more commonly assigned constant true or false values, as seen in Figure 22.

33

0

2

4

6

8

10

-10 -5 0 5 10

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

d

Figure 21: Objective function landscape for the predicate d = 0

In this case the expression leading to the true assignment is used to control
the assignment. [Note that the true branch from node 4 would have already
been executed if test data had already been found to execute the preceding true
branch from node 2. However, for simplicity, this possibility is ignored for the
purposes of this example, and others in this section].

Harman et al. [39] suggest the use of a program transformation to remove
flag variables from branch predicates, replacing them with the expression that
led to their determination. In the transformed version of the program, the
branch predicate is flag-free, and consequently plateaux induced by the flag are
also removed. Figure 23 shows a possible transformation of the program of
Figure 22. Note that although the flag is removed from the branch predicate,
it otherwise remains present in the program, in case it has a future purpose in
a later statement. The objective function at the new branch predicate now has
the more useful landscape of that of Figure 21. The transformed program is
merely a means to an end, and can be discarded once the required test data has
been found. A disadvantage of the approach is that it can not yet transform
programs where flags are involved in loops.

The approach of Baresel et al. [51] is to identify a sequence of nodes to be
executed prior to the branch predicate containing the flag. For the example of
Figure 22 where the true branch from node 4 is required, is it clear that node
3 needs to be executed before node 4 is reached. The sequence of nodes to
be executed is performed via data-flow analysis of the flags involved. The flag
used at node 4 is defined at nodes 1 and 3, with node 1 assigning a false value
and node 3 assigned the required true value. The required sequence is therefore

34

CFG
Node

1 flag = false;

2 if (d == 0)

3 flag = true;

4 if (flag)

5 result = 0;

else

6 result = n / d;

Figure 22: Alternative version of the flag example

flag = false;

if (d == 0)

flag = true;

if (d == 0)

result = 0;

else

result = n / d;

Figure 23: Flag removed from branch predicates of Figure 22 via program trans-
formation

< 3, 4 >. Further guidance is now provided to the search in the form of the
predicate of the true branch from node 2, which is required for the execution
of node 3. The approach also handles nodes that should not be executed, for
example if the flag was reassigned as false in a nested statement between nodes
3 and 4. This solution is not dissimilar to a static version of the Chaining
Approach. The objective functions for executing the node sequences are not
too dissimilar to node-node oriented functions, which were discussed in Section
3.5.2. However, the approach has problems avoiding unrequired assignments to
flags within loop bodies [51].

Aside from problems of local optima and plateaux appearing in the objective
function landscape, it is entirely possible for the branch distance calculation to
deceive the search. Consider the example of Figure 24. The goal is to execute
the true branch of the final branching node, whose branch predicate is r == 0.
However, unless d is zero, r will not be zero. The objective function works to
guide the search away from d being equal to zero, since increasing values of d
decrease values of r deceiving the search into believing it is getting closer and
closer to zero, as depicted by the objective function landscape (Figure 25).

A further problem can occur with nested branch predicates as seen with
the example of Figure 6. In this example, input data must be found satisfying
a == b before the solution to b == c and c < 0 can be attempted. Once input
data is found for one or more of the conditions, the chances of finding input

35

if (d == 0)

r = 0;

else

r = 1 / d;

if (r == 0)

// target branch

Figure 24: Deceptive objective function example

0

0.2

0.4

0.6

0.8

1

-40 -20 0 20 40

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

d

Figure 25: Landscape of the deceptive objective function

36

data that also fits subsequent conditions decreases. This is because a solution
for subsequent conditions must be found without violating any of the earlier
conditions. This leads to poor search performance. Ideally, all of the conditions
should be evaluated at once. Here, none of the values b, c or d are modified
between the branching statements, and so all predicates could be evaluated at
the first branching statement. Such a situation could be established through
the use of data dependency analysis [49].

A similar problem occurs with the use of short circuit evaluation of atomic
conditions with branch predicates using operators such as && and || in C. In
such situations the evaluation of the overall predicate breaks off early if the end
result has already been determined. Therefore, during the process of searching
for test data, the individual conditions have to be attempted one after the other.
For example:

if (a == b && b == c && c < 0)

{

// ...

}

Again, it would be preferable to evaluate all of the conditions at once. In
this situation, care needs to be taken when side effects appear in any of the
conditions. A solution here might be to apply a side-effect removal program
transformation [52, 53] first. Alternatively, variables values could be saved into
temporary variables inserted immediately before the branching statement, and
restored after the side-effect if the condition would not normally have been
evaluated.

3.5.5 Applying Variable Dependence Analysis

Harman et al. [54] apply variable dependence analysis to determine the subset
of input variables that can not affect the outcome at a branch predicate. In
this way, the search space can be reduced, increasing the chances of finding a
solution - and potentially finding it faster. Take the triangle example of Figure 4
once more. For branching node 1, only the input variables a and b are relevant.
Variable c can not affect the outcome at this node, and as such does not need
to be included in the search. For branching node 5, all input variables are
relevant, because b may have determined the outcome of a during the prior
nodes 1-4. These ideas are similar to Korel’s influences graph [31] (see Section
3.3.2), except the information is statically computed for each structural target.
The variable dependence analysis information can also be used to compute a
slice of the program with respect to the structural target. A program slice [55]
is a smaller version of the original program which only contains the statements
of interest according to some slicing criterion. In this case the criterion involves
the removal of all statements that can not affect the attainment of the desired
structure. Such slices are potentially useful since they can cut down the time
required to execute the program and evaluate individuals of the search.

3.5.6 Generating Input Sequences

A further problem for structural test data generation are test objects with in-
ternal states. In these situations an input sequence is required to cover certain

37

structures. Take the example of Figure 26. The variable counter is declared as
static. This means that the value of counter will be retained at the end of
the function call until the next time it is executed. Therefore, branching node 2
requires at least five executions of the function for the true branch to become fea-
sible. Baresel et al. [56] aim to circumvent this for branch coverage by encoding
individuals as sequences of input vectors. The sequence is of length n, in order
for n calls to the function to be performed. Since the function is now called
many times, the individual has many chances to execute the desired branch.
The objective value of the individual is calculated using the approach level and
branch distance at the closest point of executing the branch. For the input se-
quence <(6, 6, 5), (2, 2, 3), (2, 2, 3), (6, 6, 4), (6, 6, 5)>, the
individual is closest to executing the true branch of branching node in the last
call, where the branch distance is 5−3+K = 2+K. It is not required that the
individual must execute the target structure during the last call to the function.
One drawback to the scheme is that the tester must have some idea of how
long the sequence is going to be. If the maximum sequence length is too short,
the target structure will be unreachable. If it is too long, the search will take
longer or fail to find test data. The use of a variable length encoding might
solve this problem. Another problem is that the scheme only works for states
within individual functions. In the general case, state behaviour can be exhib-
ited by modules, abstract data types and objects. The example of Figure 27
demonstrates this. For the true branch in the function under test to be executed
(part (a)), the tick() function in the dependent module must first be executed
a number of times. An extension to the scheme of Baresel et al. could incor-
porate a function identification number and an extension to deal with different
type functions, in order to generate a test script for the execution of the target
structure. A further problem with state-based systems is their tendency to make
use of flag and enumeration variables to control the current state. McMinn et
al. [57] suggest an approach combining the evolutionary search for test data
with the construction of event sequences in a similar style to the Chaining Ap-
proach. The construction of an event sequence can be used to infer the function
call sequence required, as well as solving flag problems. However this will in-
cur performance penalties, as an evolutionary search must take place at every
step of the construction of event sequences. Another problem could potentially
occur when the chaining tree of event sequences becomes too large to search
exhaustively. In such cases McMinn et al. suggest the use of further heuristics
to pursue the exploration of the more “promising” sequences.

3.5.7 Use of Evolutionary Algorithms: Encodings and Operators

Early work in applying Genetic Algorithms to structural test data generation
used binary encodings. Jones et al. [44] found improvement in the use of a Gray
code.

However, it is common that variables will often only have valid values within
a subset of the possible bit patterns at the binary level. In addition to the range
imposed on an ordinal type by a compiler, input variables are often restricted
to a certain range by the context of its application. One problem that can occur
with binary encodings is the corruption that can occur with restricted types
through the actions of the crossover and mutation operators. This problem was
raised by Tracey [47]. The following shows two chromosomes (26, 81) and (56,

38

const int THRESHOLD = 5;

int sequence_example(int a, int b, int c)

{

static int counter = 0;

if (((a + b) / 2) > c) // branching node 1

counter ++;

if (counter >= THRESHOLD) // branching node 2

return 1;

return 0;

}

Figure 26: Test sequence generation example

void check_time() static time = 0;

{

if (get_time() == 60) void tick()

{ {

// target branch time ++;

} }

}

int get_time()

{

return time;

}

(a) Function under test (b) Dependent Module

Figure 27: Test sequence generation example with multiple functions

39

43) representing two integer variables restricted between 1 and 100. Crossover
at locus 8 yields two offspring - (26, 107) and (56, 17).

00110101 010001
�

00110101101011

01110000 101011 01110000010001

The final variable of the former chromosome is now out of range. One
solution might be to restrict the crossover points to the boundaries of each
variable, making it impossible for a variable value to go out of range. However
the chromosome can still be damaged by the mutation operator. A possible
solution is to repair or penalise invalid individuals. An alternative is to use a
real-valued encoding. This is the decision taken by Tracey [47] and Wegener
et al. [48]. For real-valued encodings, crossover is naturally restricted to the
boundaries of each variable. For example:

26 81
�

26 43

56 43 56 81

The mutation operator can also be based on number creep (introduced in Section
2.3.2), taking care to ensure that each value is not shifted out of its required
range. The use of a real-valued encoding also removes the need to encode and
decode the input vector into and out of a binary format.

3.6 Future Directions for Search-based Structural Testing

For search-based structural testing, there are still problems involving flag and
enumeration variables; unstructured control flow; and state behaviour, as have
been described. Furthermore, there may be a variety of other reasons as to why
test data can not be found with ease for program structures using search-based
techniques. Insights or metrics found from research in this area could be used
to tune existing techniques.

Furthermore, search-based structural testing has been limited to programs
of a numerical nature. Programs involving strings and dynamic data structures
such as lists or trees are problematic when it is necessary to determine their
required size and “shape” for the execution of some program structure. The
shape of a tree, for example, is determined by its branches and the number of
nodes at each level. Some initial work by Korel in this area utilises local search
to adapt an inputted dynamic data structure so that it matches the requirements
of the path to be executed [31]. It may also be necessary to find special values
in special orders within these data structures, for example a string specifying a
date. Some initial work in this area includes that of Baresel et al. [49]. Further
problems with dynamic types include the comparison of pointer locations. Here,
the traditional distance approach will compare memory locations, however this
information is not of real use in guiding the search to appropriate test data.

Extensions to search-based structural test data generation for object-oriented
systems are complicated by problems of internal states, since objects are inher-
ently state-based. Further issues include the use of polymorphic types. If a
method is called with a reference to an object which could be of several differ-
ent types, the test data generation system needs to decide which version of the
interface needs to be instantiated.

40

Further possible areas of research include programs using information from
files and sockets. Some initial work on structural testing of distributed systems
includes that of Ferguson and Korel [58].

4 Functional (Black-Box) Testing

This section discusses the application of metaheuristic search techniques to the
testing of the logical behaviour of a system, as described by some form of spec-
ification.

4.1 Generating Test Data from a Z Specification

Jones et al. [59] generate test data for the triangle classification program, using
a Z specification [60]. The state space of the system is described in a schema
named Triangle0, which declares three input integer variables to represent the
three sides of the triangle (x?, y? and z?). This schema also describes invariants
over the inputs to check that the lengths are within a specified range, and that
the side lengths represent a valid triangle. These checks are also included in
two other operations declared as NumError and TriangleError. Four further
operations decide if the triangle is scalene (ScalT ri), equilateral (EquiTri),
isosceles (IsosTri) or right-angled (RightTri).

Using these schema, the whole system can be declared as:

Triangle ::= (Triangle0∧EquiTri)∨ (Triangle0∧IsosTri) ∨
(Triangle0∧ScalT ri)∨ (Triangle0∧RightTri) ∨
NumError ∨ TriangleError

For the purposes of test data generation, each disjunct is considered as a
route through the system. Genetic Algorithms are used to search for test data
that satisfies each route.

The fitness function rewards individuals that come close to satisfying the
conjuncts in each route. In the case of an equilateral triangle, the predicates
to be satisfied include invariants from the state space schema conjuncted with
those of the EquiTri schema ((x? = y?)∧(y? = z?)). Each conjunct is evaluated
using a distance based approach, in a similar fashion to the branch distance
calculations used in Structural Testing. The overall fitness of the route is the
summation of the distances for each of its conjuncts.

The results report successful test data generation by the Genetic Algorithm
for each of the routes under examination, namely ScalT ri, EquiTri, IsosTri

and RightTri. However the example is small and not general enough to establish
its usefulness. Furthermore, only a small subset of Z is used, and this is limited
to the use of relational operators only.

4.2 Testing Specification Conformance

The last section showed how test data could be generated from a formal specifi-
cation. The work of Tracey et al. [61, 47] extends this idea. In their technique
the conformance of the implementation to its specification is checked by execut-
ing the test object with the generated test data, and then validating the output
against the specification.

41

int wrapping_counter(int n)

{

int r;

if (n >= 10)

r = 0;

else

r = n + 1;

return r;

}

Figure 28: Wrapping counter example

The specification of the implementation is represented as a pre-condition,
which defines valid inputs, and a post-condition, which defines the output. A
failure is found when an input situation is discovered that satisfies the pre-
condition of the function, but for which the outputs violate the post-condition.
An objective function is derived which describes the “closeness” of the test data
to uncovering such a situation, and metaheuristic search techniques are then
employed to seek failures in the implementation.

As a simple example, take the wrapping counter function of Figure 28. This
function implements a counter, which takes an integer value between 0 and 10,
and returns the increment. If the input is 10, the counter wraps round to 0.
The pre-condition for this function is simply:

n ≥ 0 ∧ n ≤ 10

The post-condition is:

(n < 10→ r = n + 1) ∨ (n = 10→ r = 0)

where n is the input value and r is the return value.
A constraint system is then derived to describe conditions of implementation

non-conformance by taking the pre-condition in conjunction with the negated
post-condition:

n ≥ 0 ∧ n ≤ 10 ∧ ¬((n < 10→ r = n + 1) ∨ (n = 10→ r = 0)) (1)

An objective function is derived to indicate how “close” failure is . This is
constructed from the above constraint system using the rules in Tables 2 and 3:

obj(n ≥ 0) + obj(n ≤ 10)+
min((obj(n < 10) + obj(r 6= n + 1)), (obj(n = 10) + obj(r 6= 0)))

(2)

It was found that the landscapes of the objective functions derived from such
constraint systems contained areas of plateaux. Figure 29 shows the objective
function landscape for a faulty version of the program where the branch predi-
cate n >= 10 is replaced by n > 10. The objective function is zero when n = 10,
indicating a fault. However, a plateau forms for values of n between 0 and 9.
This results from the use of the min operator in the objective function. For

42

Connective Objective Function obj

a ∧ b obj(a) + obj(b)
a ∨ b min(obj(a), obj(b))
a⇒ b obj(¬a ∨ b)

≡ min(obj(¬a), obj(b))
a⇔ b obj((a⇒ b) ∧ (b⇒ a))

≡ obj((a ∧ b) ∨ (¬a ∧ ¬b))
≡ min((obj(a) + obj(b)), (obj(¬a) + obj(¬b)))

a xor b obj((a ∧ ¬b) ∨ (¬a ∧ b))
≡ min((obj(a) + obj(¬b)), (obj(¬a) + obj(b)))

Table 3: Tracey’s cost functions for logical connectives, where obj(c) is the
individual cost of connective c

n < 10, the objective value of the first operand, obj(n < 10) + obj(r 6= n + 1),
is always K, which is always smaller than the objective value of the second
operand obj(n = 10) + obj(r 6= 0). It was found that guidance to the search
could be improved by converting the constraint system to disjunctive normal
form, and then using each disjunct as the basis of a separate search.

Conversion of the original constraint system (Equation 1) to disjunctive nor-
mal form gives two disjuncts:

Disjunct 1: n ≥ 0 ∧ n ≤ 10 ∧ n < 10 ∧ r 6= n + 1
Disjunct 2: n ≥ 0 ∧ n ≤ 10 ∧ n = 10 ∧ r 6= 0

The objective functions for each disjunct, are, respectively:

Disjunct 1: obj(n ≥ 0) + obj(n ≤ 10) + obj(n < 10) + obj(r 6= n + 1)
Disjunct 2: obj(n ≥ 0) + obj(n ≤ 10) + obj(n = 10) + obj(r 6= 0)

Figure 30 shows the landscape for the faulty branch predicate n >= 10 for
the objective functions of disjuncts 1 and 2 respectively. As can be seen, the
landscape for the second disjunct in the range 0 ≤ n < 10 gives more guidance
to the failure point when the objective value is zero.

Tracey [47] applied this technique to the testing of a safety-critical nuclear
primary protection system, written in Pascal. Two sub-systems were available
for this evaluation. The first consisted of 36 pages of formal VDM-SL speci-
fication and the second 54 pages, with approximately 2000 lines of executable
code. The pre- and post-conditions for each function of each sub-system were
manually derived from the specification, with 733 different disjuncts obtained.
A mutation testing tool was then used to generate mutant implementations of
the code. Simulated Annealing and Genetic Algorithms were then used as meta-
heuristic searches for the technique. Both searches killed 100% of approximately
170 non-equivalent mutants, outperforming hill climbing and random searches,
which still achieved overall scores of over 90%.

Buehler and Wegener [40] use Evolutionary Algorithms to test specification
conformance of an early version of an automated vehicle parking system. This
system aims to automate parking of a vehicle lengthways into a parking space,

43

0

2

4

6

8

10

12

-5 0 5 10 15

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

n

Figure 29: Objective function landscape for wrapping counter example, where
K = 1

using information from environmental sensors, which register surrounding ob-
jects. The individuals of the search are simply parking scenarios which describe
the dimensions of a parking space, including collision areas, and the starting
position of the car. The parking control unit is called with this data, and a
parking manoeuvre is simulated. With a successful test being one which causes
a collision, the objective function is simply the value of the smallest distance
between the car and the collision area recorded during the simulation. In the
experiment undertaken, approximately 900 scenarios were simulated, with more
than 25 scenarios found leading to collisions. After analysis of these scenarios,
it was discovered that the controller had difficulties with scenarios where the
parking space was some distance away and the starting position was already
near to the collision area on one side. A fault was also detected with the simu-
lation environment, where it was found that calculations involving the position
of the car were too imprecise. This lead to further simulated impacts with the
collision area.

Baresel et al. [56] test Simulink and Stateflow models which require input
signal sequences to be generated. One problem in this domain is the genera-
tion of a realistic signals, and their potential length, which could result in a
very large search space. Baresel et al. propose a novel solution by building
the overall signal from a series of simple signal types, for example sine, spline
and linear curves. The search space then becomes the set of parameters used
to construct a signal section built from a base signal, for example its ampli-

44

0

2

4

6

8

10

12

-5 0 5 10 15

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

n

a) Disjunct 1

0

5

10

15

20

25

-5 0 5 10 15

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue

n

b) Disjunct 2

Figure 30: Objective function landscapes for individual disjuncts of the wrap-
ping counter example, where K = 1

45

tude and length. This guarantees the generation of realistic input signals, as
well as keeping the size of the search space relatively compact. The Distronic
cruise control system was tested using this technique. This system senses the
approach to slower vehicles and automatically slows the car down to maintain
a safe following distance. The objective function checks for violations of the
requirements, by checking dependencies between output signals, checking for
output signal boundary violations and checking signal maximal overshoot and
settlement time. For Distronic, tests revealed that the system broke a maximal
speed violation under certain input conditions.

4.3 Future Directions for Search-based Functional Testing

There has been less activity in the area of search-based functional testing com-
pared to structural testing. Functional tests can be derived from different forms
of specification. For tests derived in this way, a present barrier to complete
automation is the fact that a mapping needs to be provided from the abstract
model of the specification to the concrete form of the implementation. For
system tests, a potential problem is the size of the search space. A possible
solution is the use of innovative encodings, such as the afore mentioned scheme
of Baresel et al. [56] for generating input signals from base signal types. Fur-
ther potential problems include the existence of internal states. Test sequences
may need to be generated to put the system into some valid state in order for
the property of interest to be tested. Thus, the search may need additional
information regarding the state structure of the system.

5 Grey-Box Testing

Grey-box testing combines both structural and functional information for the
purposes of testing.

5.1 Assertion Testing

The work of Korel and Al-Yami [62] attempts to find test cases that violate as-
sertion conditions, which can be embedded by the programmer into the program
code. Assertions specify constraints that apply to some state of a computation.
When an assertion evaluates to false, an error has been found in the program.
Assertions can be embedded within comment regions, either as boolean condi-
tions, for example:

/*@ i > 0 and i <= 10 @*/ // assertion

i ++; // program statement

or, as executable code. When assertions are embedded as blocks of executable
code, a special variable assert is used. This is assigned true or false values to
denote the correct or incorrect state of the assertion. For example, the following
assertion checks that the elements of an array are sorted in ascending order:

46

/*@

assert = true;

for (i = 0; i < len-1; i++)

{

if (a[i] > a[i+1])

assert = false;

}

@*/

// ... normal program code ...

Korel and Al-Yami showed how the search for test data to falsify an assertion
reduced to the problem of executing a specific statement in the program. First,
assertions are stripped out of the code. For boolean conditions, code is generated
and placed in the assertion’s original position. The assertion condition is then
negated. This new condition is the condition which represents a violation, and
therefore, the finding of a fault. This is then converted to disjunctive normal
form. A series of nested if statements are then generated for each condition
within each individual disjunct. If each if statement is evaluated as true, the
violation is reported. For example, take the assertion condition (a < b ∧ ¬(b =
c ∧ c = d)). The negated form of the assertion is (a ≥ b ∨ (b = c ∧ c = d)).
The following code is generated for this negated condition (which is already in
disjunctive normal form):

if (a >= b)

report_violation();

if (b == c)

if (c == d)

report_violation();

The goal of the search is then to execute one of the report_violation() state-
ments.

For assertions appearing as code, the assertion code is formed into a function,
with the original assertion comment region replaced with a call to that function.
The goal is then to execute a false assignment to the assert variable statement
within the function, and thereafter avoiding all true assignments to the variable.

The process of test data generation is performed using the Chaining Ap-
proach (Section 3.3.4). In addition to programmer embedded assertions, Korel’s
tool automatically generates assertions for run-time errors such as division by
zero errors, array boundary violations and overflow errors. The tool also tries to
find input data to stimulate error conditions where variables are uninitialised,
yet used in some following program statement.

In initial experiments, nine original Pascal programs were embedded with
assertions. Twenty-five faulty versions were then produced. With these exper-
iments, it was found that inputs could be found to violate an assertion - and
thereby reveal a fault - 92% of the time.

5.2 Exception Condition Testing

Tracey et al. [63, 47] built on the ideas of Korel and Al-Yami, using Genetic Al-
gorithms and Simulated Annealing to generate input data to test the handling
of run-time error conditions in code. In many languages, such as C++, Java and

47

Ada, these run-time errors are known as exceptions. These languages provide
explicit exception-handling constructs so that exception-related code can be sep-
arated from the main logic of the program. Tracey et al. generate test data for
the raising of the exception, and then for the structural coverage of the excep-
tion handler. As with the work of Korel, both problems reduce to the problem
of the execution of a certain statement (i.e. the statement which triggers the
exception via a throw or raise statement), or a sequence of statements through
the code (the raising of the exception followed by coverage of some structural el-
ement within the exception-handler). Experiments were undertaken with seven
simple programs of no more than two hundred lines of code. It was found that
metaheuristic techniques could generate test data to raise almost all the excep-
tion conditions contained within the code, and full branch coverage of exception
handlers where they existed. An industrial experiment was also undertaken on
an engine controller. Here, test data was generated which raised a variety of
exception conditions. However it was found that these exceptions could not be
raised in practice, since input situations had been generated which were not
possible during actual operation of the system.

5.3 Future Directions for Search-based Grey-Box Testing

The ability to embed arbitrary assertions within programs and be able to search
for test data in order to check their violation is a very powerful concept. Future
applications of assertion-based testing have been suggested by Tracey [36, 47].
One idea includes component-reuse testing. This amounts to searching for test
data causes the component to be called where its usage assumptions (as de-
scribed by assertions) are broken. Another application is the checking of outputs
from structural tests. Presently these have to be checked manually. Black-box
assertions could be used as an oracle for the tests, offering further automation
to the overall process.

6 Non-Functional Testing

To date, search-based testing effort in the area of non-functional testing has
concentrated on checking the best-case and worst-case execution times of real-
time systems.

6.1 Execution Time Testing

The correct operation of a real-time system not only depends on its logical
behaviour, but also its timing behaviour. In general, incorrect timing behaviour
of a real-time system occurs when outputs are produced too early or too late.
Execution time testing, therefore, involves attempting to find the worst-case
execution time (WCET) or the best-case execution time (BCET) of a system in
order to determine whether it is compliant with its timing constraints. This task
is extremely difficult to achieve, since the timing behaviour of a piece of software
is not only dependent on its internal structure but also the characteristics of the
target hardware. At the software level, timing is dependent on the instructions
used and their corresponding data items. The compiler can also introduce effects
not apparent at source code level. At the hardware level, accounting for the

48

actions of the target processor is extremely difficult when caching and pipelining
operations need to be considered. As a consequence, the longest or shortest path
through the program will not necessarily yield the longest or shortest execution
time.

6.1.1 Static Analysis

Static analysis can be used to derive upper and lower bounds on WCET and
BCET respectively, in order to try and ensure that timing schedules will be
met. This is performed by examining the possible execution paths and then
modelling timing behaviour at the hardware level. The primary step needs as-
sistance from the programmer, since information is required regarding infeasible
paths, and the maximum number of iterations for each loop appearing in the
code. Unfortunately, the possibility of simulation errors and the need for human
involvement make this an error-prone process [64, 65]. The result produced can
also be extremely pessimistic in the case of WCET and optimistic in the case
of BCET. Sometimes the estimates can vary from those observed in practice by
a magnitude of ten times 1.

Consequently, the calculations produced still need to be tested. Of course,
tests derived to expose flaws in the logical behaviour are generally of little benefit
in this domain.

6.1.2 Search-based Execution Time Testing

Search-based execution time testing seeks input situations which invoke extreme
execution times. The objective function is simply the execution time of the
system as executed with some input. The search attempts to maximise the
objective function in the case of WCET, and minimise it in the case of BCET.
If a test case is found that violates the timing constraints, the search can be
terminated.

Wegener et al. [66] were the first to apply Genetic Algorithms to tempo-
ral testing. In their experiments [67, 68] it is shown that Genetic Algorithms
yield better results than random testing. A number of experiments with in-
dustrial test objects were carried out. A further experiment investigated six
time-critical tasks in an engine control system [69]. Genetic Algorithms were
again found to outperform random search, and also tests constructed by the
developers themselves. The developer’s tests never found the longest execution
times, and in three cases the developer tests were worse than the random tests.
Since the developers had internal knowledge of the system, these results were
met with some surprise. Wegener et al. suggest this may be down to the use
of system calls, linkage and compiler optimisation whose effects on temporal
behaviour could only be guessed with difficulty by the developers. Additional
work by O’Sullivan et al. [70] applies cluster analysis to determine when the
search should be terminated. This technique decides if the search is converging
on the basis of the distribution of individuals in the search space.

Puschner et al. [64] apply Genetic Algorithms to find WCET for seven
programs with differing execution-time behaviour. The results are compared
with those obtained by random search, upper WCET bounds found by static
analysis, as well as “best effort” times, which were the researcher’s own efforts

1J. Wegener, private communication, 2003.

49

to find input data to yield the WCET. The Genetic Algorithm was found to
match or find longer times than the random search. The superiority of the
Genetic Algorithm was particularly evident in large input domains. The Genetic
Algorithm found similar times to the best effort analysis, in one case finding a
longer time. Whilst upper bound times found by static analysis were never
broken, they were matched on several occasions. In practice, this is unusual
since the times provided by static analysis are generally too pessimistic or too
optimistic for WCET and BCET respectively.

Tracey employs Simulated Annealing and Genetic Algorithms for finding
the WCET of a handful of small, well-understood programs written in Ada,
with known WCET behaviour [37, 47]. Each experiment was deemed to be a
success if the technique executed the path through the program which yielded
the already known WCET. It was found that Genetic Algorithms were more
successful than Simulated Annealing, both of which outperformed Hill Climbing
and random search. Overall, the Genetic Algorithm achieved success in fewer
trials than Simulated Annealing. In this particular study, it was found that
varying the parameters of the optimisation techniques had little effect on the
end result, apart from when the initial temperature was set too low for Simulated
Annealing, where dependency on the starting position could not be lost.

Unfortunately, if a branch in the program is executed only with a low prob-
ability, the chance of a search technique executing it is low. If this branch is
involved in a path leading to an extreme execution time, then the extreme ex-
ecution time will not be found. Gross [71] identifies a number of properties of
programs which lead to low probability branches, for example high levels of nest-
ing, branches that are only executed if an input variable is a specific value, and
so on. However just because these features exist in some source code, it does not
necessarily mean that an extreme execution time will not be found. Therefore,
Gross conducted an empirical study based on a handful of test objects to estab-
lish a system which could predict the testability of test objects, based on their
source code. However, the empirical study was very small, consisting of only
fifteen test objects. The type of test objects used was not characterised in any
particular way, and the effects of the underlying hardware were not accounted
for. Furthermore, the dependence of the prediction system on the setting of the
Genetic Algorithm parameters was not established.

Wegener et al. [65] investigated the objective function landscape for timing
behaviour. They found that due to the fact that the execution times for sev-
eral input vectors executing the same program path can be identical, plateaux
are common in the landscape. Discontinuities were also formed by significant
differences in execution time for slightly different input vectors leading to the
execution of different paths. These findings help explain why little improvement
could be obtained by using local search to improve times found by Genetic Al-
gorithms in the work of Wegener et al. [67] and Tracey [47].

The experiments performed show the superiority of search-based approaches
over random testing. Whilst search-based techniques can not guarantee that
the actual WCET or BCET will be found, the best result obtained can be used
to form an interval with the time obtained from static analysis within which the
actual extreme execution time most probably lies.

50

6.1.3 Future Directions for Search-based Execution Time Testing

The use of search techniques has been shown to bind execution times from
opposite ends to static analysis, however it is interesting that no work has been
published which attempts to combine the relative benefits of both, in order to
yield tighter bounds. For example, there is the potential to incorporate domain
knowledge from static analysis. It is surprising that no cues from either the
source code, machine code or details regarding the hardware to be used have
been included for the benefit of the search. Gross also suggests the input of
human knowledge [72]. Conversely, search-based techniques could be used to
verify path feasibility for static analysis.

Other strategies, such as guaranteeing survival of a path for a number of
generations have been suggested in the literature [68]. However, to the author’s
knowledge no work has been published reporting the effectiveness of these ideas.
In particular, search strategies could be adapted to give “low probability” paths
special treatment, by directing the search into these untried areas (for exam-
ple by using branch distance calculations) and then ensuring that the Genetic
Algorithm maintains a certain level of diversity so that the proportion of the
population utilising these paths are not instantly “killed” off. Another possibil-
ity is to combine the objective function with those used by structural test data
generation to ensure that timing behaviour involving all branches is explored.
In such instances care needs to be taken to avoid probe effects - deviations in
the actual runtime behaviour due to the effects of instrumentation.

Finally, the work on search-based execution time testing has so far been
largely restricted to programs of a procedural nature. However, some work
extending these techniques to object-oriented software is beginning to appear
[73].

6.2 Future Directions for Search-based Non-Functional Test-
ing

Work in non-functional testing has been largely restricted to execution time test-
ing. However, there are many more possibilities for automating non-functional
tests with search-based approaches. For example, the resource usage of software
could be tested by searching for input situations that cause constraints on mem-
ory or storage requirements to be broken. In a similar fashion, a search-based
approach to the automatic detection of memory leaks may also be possible.
Other possibilities for search-based automation include stress testing, security
testing and so on.

7 Conclusions

This paper has surveyed the application of metaheuristic search techniques to
software test data generation. Search-based software test data generation is just
one example of search-based software engineering.

For structural test data generation, metaheuristic dynamic approaches were
compared against static techniques based on Symbolic Execution. Techniques
using Symbolic Execution evaluate program code in order to build up a system of
constraints describing the test goal. However, this is problematic in the presence

51

of loops and in cases where computed storage locations need to be determined.
Instead of trying to formulate a constraint system, dynamic approaches merely
execute the program with some input, and examine the effects via some form
of program instrumentation. This helps circumvent some problems associated
with static techniques, since dynamic information - for example pointer loca-
tions - are known at run-time. Metaheuristic techniques are then used to search
for test data. The use of a metaheuristic technique requires the definition of
an objective function which “rewards” test data solutions on the basis of how
close they were to fulfilling the required test goal. Coverage-Oriented objective
functions reward input data on the basis of the number of program structures
executed. It was argued, however, that Structure-Oriented approaches represent
a more successful strategy. This is because each individual uncovered structure
receives specific attention in the form of an individual search. Each individual
search is provided explicit guidance to the coverage of the structure in ques-
tion by an automatically tailored objective function. Without this guidance,
nested structures only executed under special circumstances are unlikely to be
exercised.

Search-based test data generation approaches to functional testing have
largely focused on seeking input situations which demonstrate that an imple-
mentation does not conform to its specification. Executions of the test object
are monitored, with input data solutions rewarded on the basis of how close
they were to discovering a failure, as decided using the specification.

Grey-box test data generation approaches combine methods used in gener-
ating structural and functional testing. It was showed, in the work of Korel
and Al-Yami, how the violation of an program-embedded assertion reduces to
the problem of executing a program statement. Therefore, structure-oriented
white-box testing techniques can be used to attempt to induce violations of
these assertions.

The paper has discussed the results obtained in each of the testing areas,
with many successful experiments undertaken using real-world examples drawn
from industry. However, there are still many problems that need to be solved
in each area, and directions for future research have been outlined at the end of
each section.

8 Acknowledgements

This work is sponsored by DaimlerChrysler Research and Technology. The
author would like to thank Mike Holcombe, Joachim Wegener, André Baresel
and various anonymous referees for their comments on earlier drafts and sections
of this paper. The deceptive function example in Section 3.5.4 is due to Mark
Harman, and was presented at the Search-based Software Engineering workshop
in Windsor, September 2002.

References

[1] M. Harman and B. Jones. Search-based software engineering. Information
and Software Technology, 43(14):833–839, 2001.

52

[2] J. Clark, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin,
B. Mitchell, S. Mancoridis, K. Rees, M. Roper, and M. Shepperd. Re-
formulating software engineering as a search problem. IEE Proceedings -
Software, 150(3):161–175, 2003.

[3] C. R. Reeves, editor. Modern Heuristic Techniques for Combinatorial Prob-
lems. McGraw-Hill, 1995.

[4] D. Corne, M. Dorigo, and F. Glover, editors. New Ideas in Optimization.
McGraw-Hill, 1999.

[5] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller.
Equation of state calculations by fast computing machines. Journal of
Chemical Physics, 21(6):1087–1092, 1953.

[6] S. Kirkpatrick, C. D. Gellat, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[7] T. Bäck, F. Hoffmeister, and H. Schwefel. A survey of evolution strategies.
In L. Booker and R. Belew, editors, Proceedings of the 4th International
Conference on Genetic Algorithms, pages 2–9, San Diego, California, USA,
1991. Morgan Kaufmann.

[8] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford Univer-
sity Press, New York, 1996.

[9] D. Whitley. An overview of evolutionary algorithms: Practical issues and
common pitfalls. Information and Software Technology, 43(14):817–831,
2001.

[10] J. H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, 1975.

[11] D. Whitley. The GENITOR algorithm and selection pressure: Why rank-
based allocation of reproductive trials is best. In J. D. Schaffer, editor,
Proceedings of the 3rd International Conference on Genetic Algorithms,
pages 116–121, San Mateo, California, USA, 1989. Morgan Kaufmann.

[12] K. Deb and D. Goldberg. A comparative analysis of selection schemes used
in genetic algorithms. In G. J. Rawlins, editor, Foundations of Genetic
Algorithms, pages 69–93. Morgan Kaufmann, San Mateo, California, USA,
1991.

[13] D. Whitley. A free lunch proof for gray versus binary encodings. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pages
726–733, Orlando, Florida, USA, 1999. Morgan Kaufmann.

[14] D. Whitley, S. B. Rana, J. Dzubera, and K. E. Mathias. Evaluating evolu-
tionary algorithms. Artificial Intelligence, 85(1-2):245–276, 1996.

[15] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, 1989.

53

[16] J. Antonisse. A new interpretation of schema notation that overturns the
binary encoding constraint. In Proceedings of the 3rd International Con-
ference on Genetic Algorithms and Their Applications, pages 86–91, San
Mateo, California, USA, 1989. Morgan Kaufmann.

[17] L. Davis. Handbook of Genetic Algorithms. International Thomson Com-
puter Press, 1996.

[18] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cam-
bridge, MA, 1996.

[19] M. Srinivas and Lalit M. Patnaik. Genetic algorithms: A survey. IEEE
Computer, 27(6):17–26, 1994.

[20] D. Whitley. A genetic algorithm tutorial. Statistics and Computing, 4:65–
85, 1994.

[21] J. Ferrante, K. Ottenstein, and J. D. Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming
Languages and Systems, 9(3):319–349, 1987.

[22] J. King. A new approach to program testing. In Proceedings of the In-
ternational Conference on Reliable Software, pages 228 – 233. ACM Press,
1975.

[23] J. King. Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394, 1976.

[24] L. Clarke. A system to generate test data and symbolically execute pro-
grams. IEEE Transactions on Software Engineering, 2(3):215–222, 1976.

[25] R. S. Boyer, B. Elspas, and K. N. Levitt. SELECT - A formal system for
testing and debugging programs by symbolic execution. In Proceedings of
the International Conference on Reliable Software, pages 234–244. ACM
Press, 1975.

[26] C. V. Ramamoorthy, S. F. Ho, and W. T. Chen. On the automated gener-
ation of program test data. IEEE Transactions on Software Engineering,
2(4):293–300, 1976.

[27] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman, New York, 1979.

[28] R. A. DeMillo and A. J. Offutt. Constraint-based automatic test data
generation. IEEE Transactions on Software Engineering, 17(9):900 – 909,
1991.

[29] A. J. Offutt, Z. Jin, and J. Pan. The dynamic domain reduction procedure
for test data generation. Software - Practice and Experience, 29(2):167–193,
1999.

[30] W. Miller and D. Spooner. Automatic generation of floating-point test
data. IEEE Transactions on Software Engineering, 2(3):223–226, 1976.

54

[31] B. Korel. Automated software test data generation. IEEE Transactions on
Software Engineering, 16(8):870–879, 1990.

[32] M. J. Gallagher and V. L. Narasimhan. ADTEST: A test data generation
suite for ada software systems. IEEE Transactions on Software Engineer-
ing, 23(8):473 – 484, 1997.

[33] B. Korel. Dynamic method for software test data generation. Software
Testing, Verification and Reliability, 2(4):203–213, 1992.

[34] B. Korel. Automated test generation for programs with procedures. In
International Symposium on Software Testing and Analysis (ISSTA 1996),
pages 209–215, San Diego, California, USA, 1996.

[35] R. Ferguson and B. Korel. The chaining approach for software test data
generation. ACM Transactions on Software Engineering and Methodology,
5(1):63–86, 1996.

[36] N. Tracey, J. Clark, K. Mander, and J. McDermid. An automated frame-
work for structural test-data generation. In Proceedings of the International
Conference on Automated Software Engineering, pages 285–288, Hawaii,
USA, 1998. IEEE Computer Society Press.

[37] N. Tracey, J. Clark, and K. Mander. The way forward for unifying dynamic
test-case generation: The optimisation-based approach. In International
Workshop on Dependable Computing and Its Applications, pages 169–180.
Dept of Computer Science, University of Witwatersrand, Johannesburg,
South Africa, 1998.

[38] J. Wegener, K. Buhr, and H. Pohlheim. Automatic test data generation
for structural testing of embedded software systems by evolutionary testing.
In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2002), pages 1233–1240, New York, USA, 2002. Morgan Kauf-
mann.

[39] M. Harman, L. Hu, R. Hierons, A. Baresel, and H. Sthamer. Improving
evolutionary testing by flag removal. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2002), pages 1359–1366,
New York, USA, 2002. Morgan Kaufmann.

[40] O. Buehler and J. Wegener. Evolutionary functional testing of an auto-
mated parking system. In International Conference on Computer, Commu-
nication and Control Technologies and The 9th. International Conference
on Information Systems Analysis and Synthesis, Orlando, Florida, USA,
2003.

[41] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas, and K. Kara-
poulios. Application of genetic algorithms to software testing (Applica-
tion des algorithmes génétiques au test des logiciels). In 5th International
Conference on Software Engineering and its Applications, pages 625–636,
Toulouse, France, 1992.

[42] M. Roper. Computer aided software testing using genetic algorithms. In
10th International Software Quality Week, San Francisco, USA, 1997.

55

[43] A. Watkins. The automatic generation of test data using genetic algorithms.
In Proceedings of the Fourth Software Quality Conference, pages 300–309,
1995.

[44] B. Jones, H. Sthamer, and D. Eyres. Automatic structural testing using
genetic algorithms. Software Engineering Journal, 11(5):299–306, 1996.

[45] G. McGraw, C. Michael, and M. Schatz. Generating software test data by
evolution. IEEE Transactions on Software Engineering, 27(12):1085–1110,
2001.

[46] R. Pargas, M. Harrold, and R. Peck. Test-data generation using genetic
algorithms. Software Testing, Verification and Reliability, 9(4):263–282,
1999.

[47] N. Tracey. A Search-Based Automated Test-Data Generation Framework
for Safety Critical Software. PhD thesis, University of York, 2000.

[48] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test environment
for automatic structural testing. Information and Software Technology,
43(14):841–854, 2001.

[49] A. Baresel, H. Sthamer, and M. Schmidt. Fitness function design to im-
prove evolutionary structural testing. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2002), pages 1329–1336,
New York, USA, 2002. Morgan Kaufmann.

[50] L. Bottaci. Instrumenting programs with flag variables for test data search
by genetic algorithm. In Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO 2002), pages 1337 – 1342, New York, USA,
2002. Morgan Kaufmann.

[51] A. Baresel and H. Sthamer. Evolutionary testing of flag conditions.
In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2003), Lecture Notes in Computer Science vol. 2724, pages 2442
– 2454, Chicago, USA, 2003. Springer-Verlag.

[52] M. Harman, L. Hu, X. Zhang, and M. Munro. Side-effect removal trans-
formation. In Proceedings of the 9th IEEE International Workshop on
Program Comprehension (IWPC 2001), pages 310–319, Toronto, Canada,
2001. IEEE Computer Society Press.

[53] M. Harman, L. Hu, X. Zhang, M. Munro, J. J. Dolado, M. C. Otero, and
J. Wegener. A post-placement side-effect removal algorithm. In Proceed-
ings of the 18th IEEE International Conference on Software Maintenance
(ICSM 2002), pages 2–11, Montreal, Canada, 2002.

[54] M. Harman, C. Fox, R. Hierons, L. Hu, S. Danicic, and J. Wegener. VADA:
A transformation-based system for variable dependence analysis. In 2nd
IEEE International Workshop on Source Code Analysis and Manipulation
(SCAM 2002), pages 55–64, Montreal, Canada, 2002.

[55] M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352–357, 1984.

56

[56] A. Baresel, H. Pohlheim, and S. Sadeghipour. Structural and functional
sequence test of dynamic and state-based software with evolutionary al-
gorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2003), Lecture Notes in Computer Science vol. 2724,
pages 2428 – 2441, Chicago, USA, 2003. Springer-Verlag.

[57] P. McMinn and M. Holcombe. The state problem for evolutionary testing.
In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2003), Lecture Notes in Computer Science vol. 2724, pages 2488–
2497, Chicago, USA, 2003. Springer-Verlag.

[58] R. Ferguson and B. Korel. Generating test data for distributed soft-
ware using the chaining approach. Information and Software Technology,
38(5):343–353, 1996.

[59] B. Jones, H. Sthamer, X. Yang, and D. Eyres. The automatic generation of
software test data sets using adaptive search techniques. In Proceedings of
the 3rd International Conference on Software Quality Management, pages
435–444, Seville, Spain, 1995.

[60] J. M. Spivey. The Z notation: a reference manual. International Series in
Computer Science. Prentice Hall, 2nd edition, 1992.

[61] N. Tracey, J. Clark, and K. Mander. Automated program flaw finding
using simulated annealing. In Software Engineering Notes, Issue 23, No.
2, Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA 1998), pages 73–81, 1998.

[62] B. Korel and A. M. Al-Yami. Assertion-oriented automated test data gen-
eration. In Proceedings of the 18th International Conference on Software
Engineering (ICSE), pages 71–80, 1996.

[63] N. Tracey, J. Clark, K. Mander, and J. McDermid. Automated test data
generation for exception conditions. Software - Practice and Experience,
30(1):61–79, 2000.

[64] P. Puschner and R. Nossal. Testing the results of static worst-case
execution-time analysis. In Proceedings of the 19th IEEE Real-Time Sys-
tems Symposium, pages 134–143, Madrid, Spain, 1998. IEEE Computer
Society Press.

[65] J. Wegener, H. Pohlheim, and H. Sthamer. Testing the temporal behavior
of real-time tasks using extended evolutionary algorithms. In Proceedings
of the 7th European Conference on Software Testing, Analysis and Review
(EuroSTAR 1999), Barcelona, Spain, 1999.

[66] J. Wegener, K. Grimm, M. Grochtmann, H. Sthamer, and B. Jones. Sys-
tematic testing of real-time systems. In Proceedings of the 4th European
Conference on Software Testing, Analysis and Review (EuroSTAR 1996),
Amsterdam, Netherlands, 1996.

[67] J. Wegener, H. Sthamer, B. F. Jones, and D. E. Eyres. Testing real-time
systems using genetic algorithms. Software Quality Journal, 6(2):127–135,
1997.

57

[68] J. Wegener and M. Grochtmann. Verifying timing constraints of real-time
systems by means of evolutionary testing. Real-Time Systems, 15(3):275–
298, 1998.

[69] J. Wegener, R. Pitschinetz, and H. Sthamer. Automated testing of real-time
tasks. In Proceedings of the First International Workshop on Automated
Program Analysis, Testing and Verification, Limerick, Ireland, 2000.

[70] M. O’Sullivan, S. Vössner, and J. Wegener. Testing temporal correctness
of real-time systems - a new approach using genetic algorithms and clus-
ter analysis. In Proceedings of the 6th European Conference on Software
Testing, Analysis and Review (EuroSTAR 1998), Munich, Germany, 1998.

[71] H.-G. Gross. A prediction system for evolutionary testability applied to
dynamic execution time analysis. Information and Software Technology,
43(14):855–862, 2001.

[72] H.-G. Gross. An evaluation of dynamic, optimisation-based worst-case ex-
ecution time analysis. In Proceedings of the International Conference on
Information Technology: Prospects and Challenges in the 21st Century,
Kathmandu, Nepal, 2003.

[73] H.-G. Gross. Evolutionary testing in component-based real-time system
construction. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO 2002) Late Breaking Papers, pages 207–214, New
York, USA, 2002.

58

