
Testability Transformation for Efficient

Automated Test Data Search in the Presence of Nesting

Phil McMinn

University of Sheffield,

Regent Court,

211 Portobello Street,

Sheffield, S1 4DP, UK

p.mcminn@dcs.shef.ac.uk

David Binkley

Loyola College

4501 North Charles Street

Baltimore,

MD 21210-2699, USA

binkley@cs.loyola.edu

Mark Harman

King’s College

Strand, London

WC2R 2LS, UK

mark@dcs.kcl.ac.uk

Abstract

The application of metaheuristic search techniques to the automatic generation of software

test data has been shown to be an effective approach for a variety of testing criteria. However,

for structural testing, the dependence of a target structure on nested decision statements can

cause efficiency problems for the search, and failure in severe cases. This is because all

information useful for guiding the search - in the form of the values of variables at branching

predicates - is only gradually made available as each nested conditional is satisfied, one after

the other. The provision of guidance is further restricted by the fact that the path up to that

conditional must be maintained by obeying the constraints imposed by ‘earlier’ conditionals.

An empirical study presented in this paper shows the prevalence of types of if statement

pairs in real-world code, where the second if statement in the pair is nested within the

first. A testability transformation is proposed in order to circumvent the problem. The

transformation allows all branch predicate information to be evaluated at the same time,

regardless of whether ‘earlier’ predicates in the sequence of nested conditionals have been

satisfied or not. An experimental study is then presented, which shows the power of the

approach, comparing evolutionary search with transformed and untransformed versions of

two programs with nested target structures. In the first case, the evolutionary search finds

test data in half the time for the transformed program compared to the original version. In

the second case, the evolutionary search can only find test data with the transformed version

of the program.

1 Introduction

The application of metaheuristic search techniques to the automatic generation of software test
data has been shown to be an effective approach for functional [11, 21, 20], non-functional [26, 19,
27], structural [12, 13, 4, 29, 10, 17, 25, 16, 15], and grey-box [14, 24] testing criteria. The search
space is the input domain of the test object. An objective function provides feedback as to how
‘close’ input data are to satisfying the test criteria. This information is used to provide guidance
to the search.

For structural testing, each individual program structure of the coverage criteria (for example
each individual program statement or branch) is taken as the individual search ‘target’. The effects

1



Node

 

true 

true 

if a > b 

if b > c 

TARGET 

TARGET MISSED 
(c - b) fed to objective function 

TARGET MISSED 
(b – a) fed to objective function false 

false 

true if c > d false 

TARGET MISSED 
(d - c) fed to objective function 

void example(int a, int b, int c, int d)

{

(1) if (a > b)

{

(2) if (b > c)

{

(3) if (c > d)

{

(4) // target

...

Figure 1: Nested targets require the succession of branching statements to be evaluated by the
objective function one after the other

of input data are monitored through instrumentation of the branching conditions of the program.
An objective function is computed, which decides how ‘close’ an input datum was to executing
the target, based on the values of variables appearing in the branching conditionals which lead to
its execution. For example, if a branching statement ‘if (a == b)’ needs to be true for a target
statement to be covered, the objective function feeds back a ‘branch distance’ value of abs(b − a)
to the search. The objective values fed back are critical in directing the search to potential new
test data candidates which might execute the desired program structure.

However, the search can encounter problems when structural targets are nested within more
than one conditional statement. In this case, there are a succession of branching statements which
must be evaluated with a specific outcome in order for the target to be reached. For example,
in Figure 1, the target is nested within three conditional statements. Each individual conditional
must be true in order for execution to proceed onto the next one. Therefore, for the purposes of
computing the objective function, it is not known that b > c must be true until a > b is true.
Similarly, until b > c is satisfied, it is not known that c > d must also be satisfied. This gradual
release of information causes efficiency problems for the search, which is forced to concentrate on
satisfying each predicate individually. For example, inputs where b is close to being greater than
c are of no consequence to the objective function until a > b.

Furthermore, the search is restricted when seeking inputs to satisfy ‘later’ conditionals, because
satisfaction of the earlier conditionals must be maintained. If when searching for input values for
b > c, the search chooses input values so that a is not greater than b, the path taken through the
program never reaches the latter conditional, and thus the search never finds out if b > c or not.
Instead it is held up again at the first conditional, which must be made true in order to reach the
second conditional again. This inhibits the test data search, and the possible input values it can
consider in order to satisfy predicates appearing ‘later’ in the sequence of nested conditionals. In
severe cases the search may fail to find test data.

Ideally, all branch predicates need to be evaluated by the objective function at the same
time. This paper presents a testability transformation approach in order to achieve this. A
testability transformation [7] is a source-to-source program transformation that seeks to improve
the performance of a test data generation technique. The transformed program produced is merely
a ‘means to an end’, rather than an ‘end’ in itself, and can be discarded once it has served its
intermediatory purpose as a vehicle for an improved test data search.

The ability to be able to evaluate all branch predicates at the same time results in a significant
positive impact in the level of guidance that can be provided to the search. This can be seen by
examining the objective function landscapes of the original and transformed versions of programs.
Experiments carried out using evolutionary algorithms on two case studies confirm this. In the
first study, test data was found in half the number of input data evaluations for the transformed
version. In the second study, the test data search was unsuccessful unless the transformed version
of the program was used.

2



An empirical study is presented which examines if statement pairs occurring in forty real-
world programs. In this study, the latter if statement of the pair is nested in the first. The
results further serve to show the benefit of the proposed transformation approach. In previous
work [3], a method is presented to simultaneously evaluate all nested branch conditions, but only
if no further statements occur between each pair of if statements. The empirical study shows
that this only occurs for 18% of if pairs, whereas the transformation approach is also potentially
applicable to the additional 82% of cases.

2 Search-Based Structural Test Data Generation

Several search methods have been proposed for structural test data generation, including the
alternating variable method [12, 13, 4], simulated annealing [23, 22] and evolutionary algorithms
[29, 10, 17, 25, 16, 15]. This paper is interested in the application of the alternating variable
method and evolutionary algorithms to structural test data generation.

2.1 The Alternating Variable Method

The alternating variable method [12], is employed in the goal-oriented [13] and chaining [4] test
data generation approaches, and is based on the idea of ‘local’ search. An arbitrary input vector
is chosen at random, and each individual input variable is probed by changing its value by a small
amount, and then monitoring the effects of this on the branch predicates of the program.

The first stage of manipulating an input variable is called the exploratory phase. This probes
the neighborhood of the variable by increasing and decreasing its original value. If either move
leads to an improved objective value, a pattern phase is entered. In the pattern phase, a larger move
is made in the direction of the improvement. A series of similar moves is made until a minimum
for the objective function is found for the variable. If the target structure is not executed, the
next input variable is selected for an exploratory phase.

In the example of Figure 1, the search target is the execution of node 4. Say the program is
executed with the arbitrary input (a=10, b=20, c=30, d=10). Control flow diverges away from
the target down the false branch from node 1. The search attempts to minimize the objective
value, which is formed from the true branch distance from node 1, i.e a − b. Exploratory moves
are made around the value of a. A decreased value leads to a worse objective value. An increased
value leads to an improved smaller objective function value. Larger moves are made to increase a

until a is greater than b. Suppose the input to the program is now (a=21, b=20, c=30, d=10).
Execution now proceeds down the true branch from node 1, but diverges away down the false
branch at node 2. The search now attempts to minimize the objective function b - c in order
to execute node 2 as true. Exploratory moves around a have no effect on the objective function.
Therefore exploratory moves are made around the values of b. A decreased value of b leads to
a worse objective function value, whilst an increased value leads to execution taking the false
branch at node 1 again. Therefore the search explores values around the current value of c.
Increased values have a negative impact on the objective function, whilst decreased values lead to
an improvement. Further moves are made to decrease the value of c until input is found which
executes node 2 as true. Suppose this is (a=21, b=20, c=19, d=10). Execution now proceeds
directly through all branching statements to target node 4.

2.2 Evolutionary Testing

Evolutionary testing [29, 10, 17, 25, 16, 15] employs evolutionary algorithms for the test data
search. Evolutionary algorithms [28] combine characteristics of genetic algorithms and evolution
strategies, using simulated evolution as a search strategy, employing operations inspired by genetics
and natural selection.

Evolutionary algorithms maintain a population of candidate solutions rather than just one
current solution, as with local search methods. The members of the population are iteratively

3



recombined and mutated to in order to evolve successive generations of potential solutions. The
aim is to generate ‘fitter’ candidate solutions within subsequent generations, which represent
better candidate solutions. Recombination forms offspring from the components of two parents
selected from the current population. The new offspring form part of the new generation of
candidate solutions. Mutation performs low probability random changes to solutions, introducing
new genetic information into the search. At the end of each generation, each solution is evaluated
for its fitness, using a ‘fitness’ function. The fitness function can be the direct output of an objective
function, or this value ranked or scaled in some way. Using fitness values, the evolutionary search
decides whether individuals should survive into the next generation or be discarded.

In applying evolutionary algorithms to structural test data generation [29, 10, 17, 25, 16, 15],
‘candidate solutions’ are possible test data inputs. The objective function evaluates each test data
input with regards to the current structural target in question. This is performed in a slightly
different way to the alternating variable method. The notion of branch distance is key, but as
the search does not work to iteratively improve one solution, the objective function incorporates
another metric known as the approach level (also known as the approximation level) [25] to record
how many nested conditionals are left unencountered by an input en route to the target.

Take the example of Figure 1 again. If some test data input reaches node 1 but diverges
away down the false branch, its objective value is formed from the true branch distance at node
1, and an approach level value of ‘2’ to indicate there are still two further branching nodes to
be encountered (nodes 2 and 3). If the test data input evaluates node 1 in the desired way, its
objective value is formed from the true branch distance at node 2, with the approach level value
now being one. At node 3, the approach level is zero and the branch distance is derived from the
true branch predicate.

Formally the objective function for a test data input is computed as follows:

obj val = approach level + normalize(branch dist) (1)

where the branch distance branch dist is normalized into the range 0-1 by the function normalize

using the following formula [1]:

normalize(branch dist) = 1 − 1.001−branch dist (2)

thus ensuring the value added to the approach level is close to 1 when the branch distance is very
large, and zero when the branch distance is zero.

The approach level, therefore, adds a value for each branch distance which remains unevaluated.
Since these values are not known, as the path of execution through the program has meant they
have not been calculated, the maximum value is added, i.e. 1 (this ‘approximation’ to real branch
distances is why the approach level is sometimes referred to as the ‘approximation level’). As
will be seen in the next section, the addition of this value rather than actual branch distance can
inhibit search progress.

3 Nested Search Targets

The dependence of structural targets on one or more nested decision statements can cause problems
for search-based generation methods, and even failure in severe cases.

The problem stems from the fact that information valuable for guiding the search is only
revealed gradually as each individual branching conditional is encountered. The search is forced to
concentrate on each branch predicate one at a time, one after the other. In doing this, the outcome
at previous branching conditionals must be maintained, in order to preserve the execution path
up to the current branching statement. If this is not done, the current branching statement will
never be reached. This restricts the search in its choice of possible inputs, narrowing the potential
search space.

In case study 1 (Figure 2a), where the target of the search is node 4, the fact that c needs to
be zero at node 3 is not known until a == b is true at node 1. However, in order to evaluate node

4



Node
(s) void case_study_1_original{double a, double b)

{

(1) if (a == b)

{

(2) double c = b + 1;

(3) if (c == 0)

{

(4) // target

}

}

(e) }

(a) Original program

void case_study_1_transformed(double a, double b)

{

double _dist = 0;

_dist += branch_distance(a == b);

double c = b + 1;

_dist += branch_distance(c == 0);

if (_dist == 0.0)

// target

}

(b) Transformed version of program

Figure 2: Case study 1

3 in the desired way, the constraint a == b needs to be maintained. If the values of a and b are
not -1, the search has no chance of making node 3 true, unless it backtracks to reselect values of
a and b again. However, if it were to do this, the fact that c needs to be zero at node 3 will be
‘forgotten’, as node 3 is no longer reached, and its true branch distance is not computed.

This phenomenon is captured in a plot of the objective function landscape (Figure 3a), which
uses the output of Equation 1. The shift from satisfying the initial true branch predicate of node
1 to the secondary satisfaction of the true branch predicate of node 2 is characterized by a sudden
drop in the landscape down to spikes of local minima. Any move to input values where a is not
equal to b jerks the search up out of the minima and back to the area where node 1 is evaluated as
false again. When stuck in the local minima, the alternating variable method can not alter both
input variables at once. As the method will not accept an inferior solution which would place it
back at node 1, it declares failure. The evolutionary algorithm, meanwhile, has to change both
values of a and b in order to traverse the local minima down to the global minimum of (a=-1,

b=-1).
Case study 2 (Figure 4a) further demonstrates the problems of nested targets, this time with a

target within three levels of nesting. This can be seen in a plot of the objective function landscape,

5



−100 −50 0 50 100
−100

−50

0

50

100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

b

a

O
bj

ec
tiv

e 
V

al
ue

(a) Original program

−100
−50

0
50

100

−100

−50

0

50

100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

b

a

O
bj

ec
tiv

e 
V

al
ue

(b) Transformed version

Figure 3: Objective function landscape for case study 1

6



Node
(s) void case_study2(double a, double b, double c)

{

(1) double d, e;

(2) if (a == 0)

{

(3) if (b > 1)

(4) d = b + b/2;

else

(5) d = b - b/2;

(6) if (d == 1)

{

(7) e = c + 2;

(8) if (e == 2)

{

(9) // target

}

}

}

(e) }

(a) Original program

void case_study2_transformed(double a, double b, double c)

{

double _dist = 0;

double d, e;

_dist += branch_distance(a == 0);

if (b > 1)

d = b + b/2;

else

d = b - b/2;

_dist += branch_distance(d == 1);

e = c + 2;

_dist += branch_distance(e == 2);

if (_dist == 0.0)

// target

}

(b) Transformed version of program

Figure 4: Case study 2

7



−100

−50

0

50

100

−100

−50

0

50

100
1

1.5

2

ba

O
bj

ec
tiv

e 
V

al
ue

(a) Original program

−100

−50

0

50

100

−100

−50

0

50

100
0

0.05

0.1

0.15

0.2

0.25

ba

O
bj

ec
tiv

e 
V

al
ue

(b) Transformed version

Figure 5: Objective Function for case study 2, plotted where c = 0

8



seen in Figure 5a. The switch from minimizing the branch distance at node 2 to that of node 6 is
again characterized by a sudden drop. Any move from a value of a = 0 has a significant negative
impact on the objective value, as the focus of the search is pushed back to satisfying this initial
predicate. In this area of the search space, the objective function has no regard for the values of
b, which is the only variable which can affect the outcome at node 6. To select inputs in order
to take the true branch from node 6, the search is constrained in the a = 0 plane of the search
space.

3.1 Related Work

Baresel et al. [3] consider the nested search target problem where no further statements exist
between each subsequent if decision statement, as in the example of Figure 1. It is observed that
the branch distances of each branching node can simply be measured at the ‘top level’, i.e. before
node 1 is encountered, and simply added together for computing the objective function. However,
if statements do exist between pairs of if statements, this solution is no longer plausible. In case
study 1 (Figure 2), for example, the value of c at node 3 is fixed at node 2, which occurs after
node 1 is executed. In case study 2 (Figure 4), the value of d at node 6 could be fixed at nodes 4
or 5, depending on the input value of b. Furthermore, the value of e is decided at node 7, which
is nested in the true branches of nodes 6 and 2. A burning question therefore, is how often such
intermediatory statements occur between if pairs in real-world code. Is an extended solution to
the nested target problem justified?

3.2 Nesting in real world programs - an empirical study

An empirical study investigated nested if statement pairs for forty real-world programs. A de-
scription of each program, and its size, measured in lines of code by the tools wc and sloc can be
found in Table 1.

The if statement pairs analyzed, for if statements P and Q - where Q is nested in P - followed
the system dependence graph [9] pattern of the following form:

1. Q is control dependent on P

2. P is not transitively control dependent on Q

Control dependency [5] is informally defined as “for a program node I with two exits (e.g. an
if statement), program node J is control dependent on I if one exit from I always results in J

being executed, while the other exit may not result in J being executed”. Rules 1 and 2, therefore,
ensure that Q is nested in P and that P is differentiated from Q.

As outlined in the previous section, the issue of a possible statement sequence A existing
between P and Q is an important feature which distinguishes this work from the earlier work of
Baresel et al. [3]. Such occurrences were checked by the following rules:

3. A (if it exists) depends on some X which is control dependent on P (i.e. A depends on
something nested in P )

4. A (if it exists) is not transitively control dependent on Q

A further fifth rule checked if A has a role in determining the outcome at Q, i.e. there is some
variable assigned to in A that is used in the predicate at Q:

5. Q is transitively data dependent on A, and this dependency is not loop-carried

The condition that the dependency is not loop-carried ensures that if Q is data dependent on A,
A does indeed occur in between P and Q, and does not merely appear after both P and Q within
the body of a loop.

9



Table 1: Details of the real world programs

Program LOC Description
wc sloc

a2ps 63,600 40,222 Postscript formatter
acct 10,182 6,764 Accounting package
barcode 5,926 3,975 Barcode generator
bc 16,763 11,173 Calculator
byacc 6,626 5,501 Berkeley YACC
cadp 12,930 10,620 Protocol engineering tool-box
compress 1,937 1,431 Data compression utility
copia 1,170 1,112 ESA signal processing code
csurf-pkgs 66,109 38,507 Code surfer slicing tool
ctags 18,663 14,298 Produces tags for ex, more, and vi
diffutils 19,811 12,705 File comparing routines
ed 13,579 9,046 Unix editor
empire 58,539 48,800 War game
EPWIC-1 9,597 5,719 Image compression tool
espresso 22,050 21,780 Logic simplification for CAD (from SPECmark)
findutils 18,558 11,843 File finding utilities
flex2-4-7 15,813 10,654 BSD scanner (version 2.4.7)
flex2-5-4 21,543 15,283 BSD scanner (version 2.5.7)
ftpd 19,470 15,361 File Transfer Protocol daemon
gcc.cpp 6,399 5,731 Gnu C Preprocessor
gnubg-0.0 10,316 6,988 Gnu Backgammon
gnuchess 17,775 14,584 Gnu chess game player
gnugo 81,652 68,301 Gnu go game player
go 29,246 25,665 The game go
ijpeg 30,505 18,585 JPEG compressor (from SPECmark)
indent 6,724 4,834 C formatter
li 7,597 4,888 Xlisp interpreter
ntpd 47,936 30,773 Daemon for the network time protocol
oracolo2 14,864 8,333 Array processor
prepro 14,814 8,334 ESA array pre-processing code
replace 563 512 Regular expression string replacement
space 9,564 6,200 ESA ADL interpreter
spice 179,623 136,182 Digital circuit simulator
termutils 7,006 4,908 Unix terminal emulation utilities
tile-forth-2.1 4,510 2,986 Forth Environment
time-1.7 6,965 4,185 CPU resource measure
userv-0.95.0 8,009 6,132 Trust management service
wdiff.0.5 6,256 4,112 Diff front end
which 5,407 3,618 Unix utility
wpst 20,499 13,438 CodeSurfer Pointer Analysis
Sum 919,096 664,083
Average 22,977 16,602

10



Table 2: Nesting in real-world programs

Program All Nothing Unrelated Related
in between in between in between

a2ps 528 98 147 283
acct 105 36 30 39
barcode 116 8 40 68
bc 114 28 29 57
byacc 154 25 51 78
cadp 136 65 26 45
compress 22 6 4 12
copia 1 1 0 0
csurf-pkgs 757 97 267 393
ctags 257 85 31 141
diffutils 263 51 83 129
ed 162 38 45 79
empire 2,915 283 1,132 1,500
EPWIC-1 160 35 38 87
espresso 380 74 103 203
findutils 187 38 42 107
flex2-4-7 203 69 75 59
flex2-5-4 261 80 110 71
ftpd 900 174 203 523
gcc.cpp 187 40 35 112
gnubg-0.0 224 42 87 95
gnuchess 498 134 159 205
gnugo 1,578 384 531 663
go 1,568 375 609 584
ijpeg 277 104 64 109
indent 224 56 46 122
li 121 52 30 39
ntpd 973 197 310 466
oracolo2 282 22 65 195
prepro 263 16 65 182
replace 7 3 0 4
space 283 22 65 196
spice 3,010 428 717 1,865
termutils 77 13 16 48
tile-forth-2.1 44 20 6 18
time-1.7 17 6 8 3
userv-0.95.0 243 44 39 160
wdiff.0.5 49 18 12 19
which 33 4 12 17
wpst 360 41 128 191
average 448.5 82.8 136.5 229.2
% 18.5% 30.4% 51.1%

11



The results can be seen in Table 2. ‘All’ is a figure of all if statement pairs analyzed. ‘Nothing
in between’ records all if P and Q pairs with no A. ‘Unrelated in between’ records all P and Q

pairs with an A, but A does not have an effect on Q. ‘Related in between’, on the other hand,
counts all A’s that have an effect on the predicate at Q.

The results show that the ‘unrelated in between’ case, that is the form of if pairs that can be
handled by the technique of Baresel et al. account for less than a fifth of all if pairs studied. A
further 30% of the ‘unrelated in between’ could also be handled, since the extra statements do not
affect Q. Therefore, the branch distance calculation could still legitimately take place before P ,
however data dependency analysis would be required to establish this situation. The remaining
50% of the ‘related in between’ cases would not be plausibly handled by the approach of Baresel
et al. This is overcome by the application of a testability transformation approach described in
the next section.

4 Applying a Testability Transformation

A testability transformation [7] is a source-to-source program transformation that seeks to improve
the performance of a test data generation technique. The transformed program produced is merely
a ‘means to an end’, rather than an ‘end’ in itself, and can be discarded once it has served its
purpose as an intermediary for generating the required test data. The transformation process
need not preserve the traditional meaning of a program. For example, in order to cover a chosen
branch, it is only required that the transformation preserve the set of test-adequate inputs. That
is, the transformed program must be guaranteed to execute the desired branch under the same
initial conditions. Testability transformations have also been applied to the problem of flags for
evolutionary test data generation [2, 6], and the transformation of unstructured programs for
branch coverage [8].

The philosophy behind the testability transformation proposed in this paper is to remove the
constraint that the branch distances of nested decision nodes must be minimized to zero one at a
time, and one after the other. The transformation takes the original program and removes decision
statements on which the target is control dependent. In this way, when the program is executed, it
is free to proceed into the originally nested areas of the program, regardless of whether the original
branching predicate would have allowed that to happen. In place of the decision is an assignment
to a variable dist, which computes the branch distance based on the original predicate. At the
end of the program, the value of dist reflects the summation of each of the individual branch
distances. This value may then be used as the objective value for the test data input.

The original version of case study 1 (Figure 2a) can therefore be transformed into the program
seen in Figure 2b. The benefit of the transformation can be immediately seen in a plot of the ob-
jective function landscape (Figure 3b). The sharp drop into local minima of the original landscape
(Figure 3a) is replaced with smooth planes sloping down to the global minimum.

Case study 2 (Figure 4) is of a slightly more complicated nature, with the target positioned
within three levels of nesting. A further if-else decision exists at level one, before the second
conditional en route to the target. Within both branches of this decision, a value is assigned to the
variable d, on which the if statement at node 6 is dependent upon. The transformed version of
the program can be seen in Figure 4b. Again, the benefits of the transformation can be instantly
seen in a plot of the objective landscape (Figure 5b). The sharp drop in the original landscape
(Figure 5a) corresponding to branching node 1 being evaluated as true and branching node 2 being
encountered, is replaced by a smooth landscape sloping down from all areas of the search space
down into the global minimum.

5 Experimental Study

The two case studies introduced were put to the test with an evolutionary approach.
The Genetic and Evolutionary Algorithm Toolbox (GEATbx) [18] was used to perform the

12



Table 3: Test data evaluations for case study 1

Run Untransformed Version Transformed Version

1 35,130 11,910
2 31,350 18,390
3 17,580 13,260
4 24,060 10,560
5 27,300 14,070
6 38,100 13,260
7 39,180 9,750
8 27,300 13,800
9 30,540 12,720

10 32,700 16,500
Average 30,324 13,422

Table 4: Test data evaluations for case study 2

Run Untransformed Version Transformed Version

1 54,030 19,470
2 54,030 20,550
3 54,030 16,770
4 54,030 17,850
5 54,030 18,390
6 54,030 19,200
7 54,030 19,740
8 54,030 19,470
9 54,030 15,150

10 54,030 16,500
Average 54,030 18,309

evolutionary searches, which were conducted as follows. 300 individuals were used per generation,
split into 6 subpopulations starting with 50 individuals each. Linear ranking is utilized, with a
selection pressure of 1.7. The input vectors are operated on by the evolutionary algorithm ‘as is’,
i.e. as a vector of double values. Individuals are recombined using discrete recombination, and
mutated using real-valued mutation. Real-valued mutation is performed using “number creep” -
the alteration of variable values through the addition of small amounts. Competition and migration
is employed across subpopulations. Each evolutionary search was terminated after 200 generations
if test data was not found. Each experiment with each program version was repeated ten times.

The domains of each double variable were -1000 to 1000 with a precision of 0.001, giving search
space size of 1011 for case study 1 and 1017 for case study 2.

For case study 1, the evolutionary algorithm generally performed less than half the number
of objective function evaluations (i.e. test data evaluations) for the transformed version of the
program, compared to the untransformed version (Table 3). The average best objective value
plot, in Figure 6, shows search progress for the untransformed version of case study, with sudden
improvements in objective as the search navigates from local minimum to local minimum. Search
progress for the transformed version, as expected, is more consistent and gradual.

The evolutionary algorithm encountered severe difficulties with the untransformed program for
case study 2. Due to the existence of three levels of nesting, the search fails on each occasion.
Exactly the same number of test data evaluations are performed on each of the ten repetitions of
the experiment (Table 4), terminating in the 200th generation. The search has much more success

13



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

Generation

A
ve

ra
ge

 B
es

t O
bj

ec
tiv

e 
V

al
ue

Original version
Transformed Version

14070

Figure 6: Average best objective value plot for case study 1

with the transformed version of the program, finding test data as early as the 55th generation in
one of the ten repetitions.

6 Future Work

The transformation algorithm proposed in this paper does not accommodate for decision state-
ments that are looping constructs, such as ‘while’ or ‘for’, or for if decision statements that are
themselves nested within an outer loop. This is because the branch distance value for a condi-
tional could potentially be added more than once. An advanced version of the algorithm might
allow for loops by simply recording the minimum value of the branch distance encountered for
the conditional, and adding this to the end value of the dist variable. It makes no difference to
the transformation algorithm, of course, if intermediate blocks of statements occurring between
nested if pairs feature self-contained loops.

The transformation algorithm also has issues with certain type of predicates, which need to
be detected unless run-time errors are allowed to occur. One example of this is a predicate which
tests the possibility of a dynamic memory reference. The following example may lead to a program
error if it is transformed, due to the possibility of the array index of i being less than zero or
greater than the length of the array, and thus causing an array out of bounds error:

if (i >= 0 && i < length_of_a)

{

printf("%f\n", a[i]);

}

Another issue is the possibility of introducing division by zero errors, for example in the
following segment of code if the conditional were to be removed:

if (d != 0)

{

r = n / d;

}

14



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 100 200

Generation

A
ve

ra
ge

 B
es

t O
bj

ec
tiv

e 
V

al
ue

Original version
Transformed Version

Figure 7: Average best objective value plot for case study 2

Currently, the transformation algorithm works on a per-target basis - a separate transformation
needs to be performed for each search target. An advanced version of the algorithm could modify
the predicates of the program to contain function calls. The function call would record the branch
distance, and then decide on the basis of the nesting of the current target as to a boolean value to
return, and ultimately, whether execution should be allowed to proceed down a specific branch.
For example, in the following, tt nesting check records the branch distance of a == b at node A
and lets execution flow down through its true branch regardless of whether a actually does equal
b or not. However, tt nesting check remains true to the original predicate b == c at node B,
since the current target is not nested within it, but allows execution through the true branch at
node C regardless of whether c == d.

Node
(A) if (tt_nesting_check(a == b))

{

(B) if (tt_nesting_check(b == c))

{

...

}

(C) if (tt_nesting_check(c == d))

{

// current target nested in here

}

}

7 Conclusions

This paper has described how targets nested within more than one conditional statement can
cause problems for search-based approaches to structural test data generation. In the presence
of nesting, the search is forced to concentrate on satisfying one branch predicate at a time, one
after the other. This slows search progress and restricts the potential search space available for
the satisfaction of branching predicates ‘later’ in the sequence of nested conditionals.

15



A testability transformation approach was presented to the problem. A testability transfor-
mation is a source-to-source program transformation that seeks to improve the performance of
a test data generation technique. The transformed program produced is merely a ‘means to an
end’, rather than an ‘end’ in itself, and can be discarded once it has served its purpose as an
intermediary for generating the required test data.

The main idea behind the testability transformation proposed in this paper is to remove the
constraint that the branch distances of nested decision nodes must be evaluated one after the
other. The transformation takes the original program and removes decision statements on which
the target is control dependent. In this way, when the program is executed, it is free to proceed
into the original nested areas of the program, calculating all branch distance values for the purpose
in order to compute objective values which are in full possession of the facts about the input data.

The approach was put to the test with two case studies. The case studies are small examples,
and by no means represent a worse-case scenario, yet serve to demonstrate the power of the
approach. The transformed version of case study 1 allowed the evolutionary search to find test
data in half the number of test data evaluations over the original version of the program. Whilst
test data could not be found for the search target for the original version of case study 2, the
evolutionary algorithm succeeded every time with the transformed version.

The transformation approach deals with assignments to variables in between nested condition-
als which may affect the outcome at ‘later’ conditionals en route to the current structural target.
The empirical study of if pairs in forty real-world programs, where one of the if statements of
the pair is nested within the other, showed that this situation occurs just over 50% of the time.
These cases can not be dealt with earlier work of Baresel et al. [3] which investigated the nesting
problem.

References

[1] A. Baresel. Automatisierung von strukturtests mit evolutionren algorithmen. Diploma Thesis,
Humboldt University, Berlin, Germany, July 2000.

[2] A. Baresel, D. Binkley, M. Harman, and B. Korel. Evolutionary testing in the presence of
loop-assigned flags: A testability transformation approach. In Proceedings of the Interna-
tional Symposium on Software Testing and Analysis (ISSTA 2004), pages 43–52, Boston,
Massachusetts, USA, 2004. ACM.

[3] A. Baresel, H. Sthamer, and M. Schmidt. Fitness function design to improve evolutionary
structural testing. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2002), pages 1329–1336, New York, USA, 2002. Morgan Kaufmann.

[4] R. Ferguson and B. Korel. The chaining approach for software test data generation. ACM
Transactions on Software Engineering and Methodology, 5(1):63–86, 1996.

[5] J. Ferrante, K. Ottenstein, and J. D. Warren. The program dependence graph and its use
in optimization. ACM Transactions on Programming Languages and Systems, 9(3):319–349,
1987.

[6] M. Harman, L. Hu, R. Hierons, A. Baresel, and H. Sthamer. Improving evolutionary testing
by flag removal. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2002), pages 1359–1366, New York, USA, 2002. Morgan Kaufmann.

[7] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel, and M. Roper. Testability
transformation. IEEE Transactions on Software Engineering, 30(1):3–16, 2004.

[8] R. Hierons, M. Harman, and C. Fox. Branch-coverage testability transformation for unstruc-
tured programs. The Computer Journal, To appear, 2005.

16



[9] T. Horwitz S., Reps and D. Binkley. Interprocedural slicing using dependence graphs. ACM
Transactions on Programming Languages and Systems, 12:26–60, 1990.

[10] B. Jones, H. Sthamer, and D. Eyres. Automatic structural testing using genetic algorithms.
Software Engineering Journal, 11(5):299–306, 1996.

[11] B. Jones, H. Sthamer, X. Yang, and D. Eyres. The automatic generation of software test data
sets using adaptive search techniques. In Proceedings of the 3rd International Conference on
Software Quality Management, pages 435–444, Seville, Spain, 1995.

[12] B. Korel. Automated software test data generation. IEEE Transactions on Software Engi-
neering, 16(8):870–879, 1990.

[13] B. Korel. Dynamic method for software test data generation. Software Testing, Verification
and Reliability, 2(4):203–213, 1992.

[14] B. Korel and A. M. Al-Yami. Assertion-oriented automated test data generation. In Pro-
ceedings of the 18th International Conference on Software Engineering (ICSE), pages 71–80,
1996.

[15] P. McMinn. Search-based software test data generation: A survey. Software Testing, Verifi-
cation and Reliability, 14(2):105–156, 2004.

[16] P. McMinn and M. Holcombe. Hybridizing evolutionary testing with the chaining approach.
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2004),
Lecture Notes in Computer Science vol. 3103, pages 1363–1374, Seattle, USA, 2004. Springer-
Verlag.

[17] R. Pargas, M. Harrold, and R. Peck. Test-data generation using genetic algorithms. Software
Testing, Verification and Reliability, 9(4):263–282, 1999.

[18] H. Pohlheim. GEATbx - Genetic and Evolutionary Algorithm Toolbox,
http://www.geatbx.com.

[19] P. Puschner and R. Nossal. Testing the results of static worst-case execution-time analysis. In
Proceedings of the 19th IEEE Real-Time Systems Symposium, pages 134–143, Madrid, Spain,
1998. IEEE Computer Society Press.

[20] N. Tracey. A Search-Based Automated Test-Data Generation Framework for Safety Critical
Software. PhD thesis, University of York, 2000.

[21] N. Tracey, J. Clark, and K. Mander. Automated program flaw finding using simulated an-
nealing. In Software Engineering Notes, Issue 23, No. 2, Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA 1998), pages 73–81, 1998.

[22] N. Tracey, J. Clark, and K. Mander. The way forward for unifying dynamic test-case genera-
tion: The optimisation-based approach. In International Workshop on Dependable Computing
and Its Applications, pages 169–180. Dept of Computer Science, University of Witwatersrand,
Johannesburg, South Africa, 1998.

[23] N. Tracey, J. Clark, K. Mander, and J. McDermid. An automated framework for structural
test-data generation. In Proceedings of the International Conference on Automated Software
Engineering, pages 285–288, Hawaii, USA, 1998. IEEE Computer Society Press.

[24] N. Tracey, J. Clark, K. Mander, and J. McDermid. Automated test data generation for
exception conditions. Software - Practice and Experience, 30(1):61–79, 2000.

[25] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test environment for automatic struc-
tural testing. Information and Software Technology, 43(14):841–854, 2001.

17



[26] J. Wegener, K. Grimm, M. Grochtmann, H. Sthamer, and B. Jones. Systematic testing
of real-time systems. In Proceedings of the 4th European Conference on Software Testing,
Analysis and Review (EuroSTAR 1996), Amsterdam, Netherlands, 1996.

[27] J. Wegener and M. Grochtmann. Verifying timing constraints of real-time systems by means
of evolutionary testing. Real-Time Systems, 15(3):275–298, 1998.

[28] D. Whitley. An overview of evolutionary algorithms: Practical issues and common pitfalls.
Information and Software Technology, 43(14):817–831, 2001.

[29] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas, and K. Karapoulios. Application
of genetic algorithms to software testing (Application des algorithmes génétiques au test des
logiciels). In 5th International Conference on Software Engineering and its Applications,
pages 625–636, Toulouse, France, 1992.

18


