
AVMf : An Open-Source Framework and
Implementation of the Alternating Variable Method

Phil McMinn Gregory M. Kapfhammer
University of Sheffield, UK Allegheny College, USA

Abstract. The Alternating Variable Method (AVM) has been shown to
be a fast and effective local search technique for search-based software
engineering. Recent improvements to the AVM have generalized the rep-
resentations it can optimize and have provably reduced its running time.
However, until now, there has been no general, publicly-available imple-
mentation of the AVM incorporating all of these developments. We in-
troduce AVMf , an object-oriented Java framework that provides such an
implementation. AVMf is available from http://avmframework.org for
configuration and use in a wide variety of projects.

1 Introduction
The Alternating Variable Method (AVM) is a local search method that was first
applied to a search-based software engineering (SBSE) problem — the automatic
generation of numerical test data — by Bogdan Korel in 1990 [12]. Despite the
application of, supposedly more robust, global search techniques to this problem
(e.g., Genetic Algorithms (GAs)), the AVM has stood the test of time. In 2007,
Harman and McMinn [7] reported its effectiveness and efficiency for a series
of C programs, and combined it with a GA to provide a “best of” Memetic
Algorithm approach [8]. It has since been implemented into tools to generate
test data for C programs (e.g., IGUANA [17] and AUSTIN [14,15]); generate
Java test suites with EvoSuite [3,4]; create relational database data with the
SchemaAnalyst tool [9,18]; and combined with dynamic symbolic execution in
Microsoft’s Pex tool [16]. The AVM has also found application to additional prob-
lems, including decision ordering for software product lines [22], balancing work-
load in requirements assignment [21], solving reliability-redundancy-allocation
problems [20], as well as test case selection [19] and test suite prioritization [2].

Since Korel’s original work, the AVM has been extended and improved for
problems in SBSE: now it can handle more variable types, including fixed-point
numbers [7] and strings [9,18], and can leverage new strategies proven to speed
up the search for certain common types of objective function landscape [10,11].

The AVM is therefore capable of handling a variety of search representations
and locating solutions to SBSE problems in a very efficient manner. Yet, to in-
corporate it into a project, a developer has previously had to understand the
different variants of the algorithm and produce a faithful implementation, or,
attempt to adapt the open-source of a less general version specifically written
for test data generation (e.g., [15]). Either of these options represents a poten-
tially time-consuming and error prone task. To address this, we have developed
AVMf , a general, open-source object-oriented framework that implements dif-
ferent variants of the AVM and its representations in Java. AVMf is available for
download from http://avmframework.org for deployment in SBSE projects. It
is fully documented and comes with a series of examples demonstrating its usage.

http://avmframework.org
http://avmframework.org


2 The AVM and Recent Improvements to the Algorithm

The Original AVM. The AVM optimizes a vector ~x = (x1, . . . , xlen) according
to some objective function by taking, in turn, each variable xi, 1 ≤ i ≤ len of
the vector and subjecting it to an individual search process. The original AVM
used a variable search process subsequently named “Iterated Pattern Search”
(IPS) [10,11], shown by lines 1–7 of Figure 1. Here, we assume that xi ∈ Z,
although later we explain how more complex types may also be handled by the
approach. The initial part of the IPS algorithm involves making an increase and
decrease of 1 to the value of the variable (lines 2–3), referred to as exploratory
moves. If an exploratory move leads to an improvement in the objective value, a
positive or negative “direction” is established for making further pattern moves
(lines 4–6). Pattern moves of increasing size continue to be made while the ob-
jective value improves. When a pattern move fails to improve upon the objective
value, the search has likely overshot an optimum, due to a pattern move that
was larger than the difference between the current value of xi and the optimal
value. When this occurs, IPS loops back to the exploratory move process to re-
establish a new direction. If exploratory moves do not lead to an improvement
in objective value, IPS terminates and hands back control to the main loop, thus
leading to the consideration of the next variable in the vector.

When all variables in the vector have been considered, the AVM wraps back
to the first. When a cycle of all variables has completed without any improvement
in the objective function, the AVM is lodged in a local optimum. At this point
the search process can be restarted with a new (typically random) series of
vector values. The AVM continues in this fashion until resources are exhausted
(e.g., a maximum number of objective function evaluations or restarts have been
expended, or a time limit has expired), or, the best outcome is attained — the
optimal target vector is discovered. (For simplicity, these different termination
criteria are not included as part of the algorithm definition in Figure 1.)

New Variable Search Algorithms. Kempka et al. [10,11] proposed two new
variable searches for the AVM, as shown in Figure 1. Kempka et al. proved
that these search techniques are more efficient than IPS for unimodal objective
function landscapes. “Geometric Search” (GS) begins by performing exploratory
moves followed by pattern moves like IPS. Unlike IPS, however, it does not iterate
after overshooting the optimum. Instead it uses past moves to “bracket” the
upper and lower limits of the variable in which the optimum must lie, performing
a binary search to finally locate it (lines 8–15 of Figure 1). “Lattice Search” (LS)
is a slightly faster alternative to GS where the unimodal assumption holds. LS
converges on the optimum through moves that increase xi from the lower value
of the bracket through the addition of Fibonacci numbers (lines 16–22).

New Representations. Korel only demonstrated the original AVM with in-
teger variables [12]. Harman and McMinn [7] extended this initial definition by
allowing each variable to be specified with a set number of decimal places p, al-
lowing fixed-point numbers to be handled. Exploratory moves correspond to the
smallest possible increments and decrements of the variable (i.e., ±10−p). Strings
may also now be handled by the approach [9,18]. A string variable is essentially



1: while true do . {IPS}
2: if obj(x− 1) ≥ obj(x) and obj(x + 1) ≥ obj(x) return x . {IPS,GS,LS}
3: if obj(x− 1) < obj(x + 1) then let k := −1 else let k := 1 . {IPS,GS,LS}
4: while obj(x + k) < obj(x) do . {IPS,GS,LS}
5: let x := x + k, k := 2k . {IPS,GS,LS}
6: end while . {IPS,GS,LS}
7: end while . {IPS}
8: let ` := min(x− k/2, x + k), r := max(x− k/2, x + k) . {GS,LS}
9: while ` < r do . {GS}

10: if obj(b(` + r)/2c) < obj(b(` + r)/2c+ 1) then . {GS}
11: r := b(` + r)/2c . {GS}
12: else . {GS}
13: ` := b(` + r)/2c+ 1 . {GS}
14: end if . {GS}
15: end while . {GS}
16: let n := min{n | Fn ≥ r − l + 2} . {LS}
17: while n > 3 do . {LS}
18: if ` + Fn−1 − 1 ≤ r and obj(` + Fn−2 − 1) ≥ obj(` + Fn−1 − 1) then . {LS}
19: let ` := ` + Fn−2 . {LS}
20: end if . {LS}
21: let n := n− 1 . {LS}
22: end while . {LS}
23: x := ` . {GS,LS}

Fig. 1. IPS, LS, GS algorithms for a variable x ∈ Z. The function obj is equivalent
to evaluating the objective function with a vector ~x with all components except xi set
to constants and xi substituted by the free parameter x. F is the Fibonacci sequence
starting from F0 = 0. Each line is annotated to show the algorithm(s) it is a part of.

a sub-vector of the overall vector to be optimized. Their elements are characters
that are individually manipulated by the local search routine. The length of this
sub-vector is allowed to vary through a special sequence of moves that increase
and decrease its size, supporting the optimization of variable-length strings.

3 The AVM Framework (AVMf)
The AVM Framework (AVMf) implements both the AVM algorithm and the
subsequent enhancements to the original version proposed by Korel. The frame-
work has been implemented with the aim of making the core algorithms as clear
as possible, thereby closely matching the algorithmic definitions of Figure 1,
while still adhering to well-accepted principles of good object-oriented design.
AVMf is publicly available from http://avmframework.org as a Git repository
for inclusion in SBSE projects where the AVM may be the core search algorithm,
or, a component of a more complex technique (e.g., a Memetic Algorithm) in-
volving calls to algorithms in the framework. Or, the code can simply be lifted
from the repository and adapted to a project as developers see fit.

To enable its algorithms to be easily used in SBSE projects, AVMf provides
a framework of Java classes, which we now describe in detail. Each aspect of the
framework is practically demonstrated by the source code of a series of examples
in the repository, the simplest of which are introduced at the end of this section.

Configuring an AVM Search. The primary class is the AVM class in the root
(i.e., org.avmframework) package. In order to construct an AVM instance, the
developer must supply an instance of one of the variable search methods —
IteratedPatternSearch, GeometricSearch or LatticeSearch — which reside

http://avmframework.org


in the localsearch package. The developer must also construct the AVM instance
using a TerminationPolicy parameter, an object that decides when the AVM
should terminate if a solution cannot be found. Options include a maximum
number of objective function evaluations, a maximum number of restarts, or a
time limit. Finally, constructing the AVM instance further requires two objects of
type Initializer that are used to initialize variable vector values at the start
of the search and re-initialize them on a restart. Default values may be used that
can be specified for each variable, or random values can be chosen (through in-
stances of either DefaultInitializer or RandomInitializer, two classes that
both reside in the initializer package). To support the generation of random
numbers, AVMf requires a RandomGenerator from the org.apache.commons

library that provides an implementation of the Mersenne Twister algorithm.

In order to initiate a search process, the search method of the AVM instance
must be invoked with an instance of a Vector class and an ObjectiveFunction,
respectively. The Vector class describes the representation of the prob-
lem (i.e., the types of variables in the vector to be optimized), while the
ObjectiveFunction class describes how instances of those vectors should be
rewarded with objective values during the search.

Representation. In order to configure the search representation, an instance of
the Vector class (in the root package) must be created, and variables added to
it through the addVariable method, which accepts an instance of a Variable.
Since the Variable class is abstract, an instance of one of its concrete sub-
classes must be provided (i.e., one of IntegerVariable, FixedPointVariable,
CharacterVariable or StringVariable). Each variable must be constructed
with information such as its minimum or maximum value (maximum length for
strings), number of decimal places for fixed-point variables, and a “default” ini-
tial value in the search space (e.g., an empty string or a zero value). These values
are used to initialize vector variables when the DefaultInitializer provides a
starting point for the search, as previously described in this section.

Objective Function. In contrast to the rest of the framework, which re-
quires configuring instances of existing classes, an objective function must be
supplied to the search process by overriding the abstract ObjectiveFunction

of the objective package. This involves providing an implementation of the
computeObjectiveValue method that takes a Vector as a parameter and re-
turns an instance of the abstract ObjectiveValue class. Since the AVM only
needs to know whether one entity has a “better” objective value than another, ex-
act numerical values are not needed, and so this class requires the “betterThan”,
“worseThan” and “sameAs” methods to be overridden. The objective package
also supplies the concrete NumericalObjectiveValue class for returning higher-
is-better or lower-is-better numerical objective values as needed.

Reporting. The search method of the AVM class returns an instance of the
Monitor class, which can be used to find out interesting statistics regarding the
search. These include the best vector found by the search, its objective value, the
number of objective function evaluations that took place, the number of restarts
that happened and the amount of time that the search took (in milliseconds).



The Monitor class can also report the number of unique objective function eval-
uations. Employing the technique known as memoization, the objective function
can make optional usage of a cache that maps previously observed vectors to
objective values, avoiding the need to perform potentially costly re-evaluations.

Examples. AVMf comes with a series of examples demonstrating its use.
Instructions on how to compile and run these examples are available in the
project’s README.md file located in the main directory of the code repository.
The “Quadratic” example demonstrates the use of the AVM to solve a quadratic
equation by finding one of its roots. “AllZeros” shows the optimization of an
array of integers to zero values from arbitrary random values, while “String”
optimizes a string value from an initially random string to a specified target.

Each example makes use of its own problem-specific fitness function, which
forms part of its code definition. The following is taken from the Quadratic

class, where the constants A, B and C correspond to the co-efficients of the equa-
tion (here, A = 4, B = 10 and C = 6). The function obtains the value of x from the
(single variable) vector, and computes the value of y. The objective value is then
assigned as the distance between y and zero, since intuitively, the closer the value
of y to zero, the closer the search is to finding one of the roots of the equation:

ObjectiveFunction objFun = new ObjectiveFunction() {

protected ObjectiveValue computeObjectiveValue(Vector vector) {

double x = ((FloatingPointVariable) vector.getVariable(0)).asDouble();

double y = (A * x * x) + (B * x) + C;

double distance = Math.abs(y);

return NumericObjectiveValue.LowerIsBetterObjectiveValue(distance, 0);

}};

The following shows the output of the search process and the discovery of
one of the equation’s roots, −1.5. Re-running the search from different starting
positions leads to the other root, −1, also being found.

Best solution: -1.5

Best objective value: 0.0

Number of objective function evaluations: 80 (unique: 80)

Running time: 3ms

As part of future work, we plan to extend the example set with case studies
showing how the AVM is being or can be applied to real SBSE problems, such
as test data generation. These will be made available via the code repository.

4 Conclusions and Future Work
This paper introduced AVMf , an open-source implementation of the AVM and
a framework supporting its use in SBSE projects. AVMf is capable of advancing
the AVM in both industrial practice and in the SBSE research community. Using
AVMf , possible future applications of the AVM include the following:

Automatically Generating Readable Test Data. Generating readable tests
that humans can easily understand has been a recent interest of search-based
testing researchers (e.g., rewarding inputs that obtain a high score from a lan-
guage model [1]). In a recent study evaluating test generation tools, participants
also requested more readable values [5,6]. Given that the AVM employs a local
search, it could start with examples of human-generated inputs and adapt them
to new coverage targets — all without losing the qualities of the original data.



Automatically Determining Optimal Software Configuration Values.
Highly configurable software tools, such as the GCC compiler, may be tunable
through the use of search-based techniques such as genetic algorithms or the
AVM [13]. In large search spaces of parameters, the AVM’s exploratory move
phase equips it to quickly discover which particular variables are relevant to the
problem, while its phase of pattern moves allows it to determine the optimal
values of parameters. Again, as a local search technique, the AVM is also well
suited to taking an existing known-good human solution and improving upon it.

Automated Bug-Fixing. Recent experiments reveal that real-world bugs can
occur as a result of mistakes made when defining constant variables and set-
ting values in configuration files [23]. As such, the AVM could search for ap-
propriate values that could potentially form the basis of a “fix”. During its
exploratory move phase the AVM could, by performing a quick sweep of small
changes through the values involved and seeing how the resulting fitness values
are affected, quickly determine which constants are relevant to the fix.

References
1. Afshan, S., McMinn, P., Stevenson, M.: Evolving readable string test inputs using a natural

language model to reduce human oracle cost. In: Proc. ICST (2013)
2. Arrieta, A., Wang, S., Sagardui, G., Etxeberria, L.: Test case prioritization of configurable

cyber-physical systems with weight-based search algorithms. In: Proc. GECCO (2016)
3. Fraser, G., Arcuri, A., McMinn, P.: Test suite generation with memetic algorithms. In: Proc.

GECCO (2013)
4. Fraser, G., Arcuri, A., McMinn, P.: A memetic algorithm for whole test suite generation. JSS

(2015)
5. Fraser, G., Staats, M., McMinn, P., Arcuri, A., Padberg, F.: Does automated white-box test

generation really help software testers? In: Proc. ISSTA (2013)
6. Fraser, G., Staats, M., McMinn, P., Arcuri, A., Padberg, F.: Does automated unit test generation

really help software testers? a controlled empirical study. ACM TOSEM (2015)
7. Harman, M., McMinn, P.: A theoretical and empirical analysis of evolutionary testing and hill

climbing for structural test data generation. In: Proc. ISSTA (2007)
8. Harman, M., McMinn, P.: A theoretical and empirical study of search based testing: Local,

global and hybrid search. IEEE TSE (2010)
9. Kapfhammer, G.M., McMinn, P., Wright, C.J.: Search-based testing of relational schema in-

tegrity constraints across multiple database management systems. In: Proc. ICST (2013)
10. Kempka, J., McMinn, P., Sudholt, D.: A theoretical runtime and empirical analysis of different

alternating variable searches for search-based testing. In: Proc. GECCO (2013)
11. Kempka, J., McMinn, P., Sudholt, D.: Design and analysis of different alternating variable

searches for search-based software testing. TCS (2015)
12. Korel, B.: Automated software test data generation. IEEE TSE (1990)
13. Kukunas, J., Cupper, R.D., Kapfhammer, G.M.: A genetic algorithm to improve Linux kernel

performance on resource-constrained devices. In: Proc. GECCO (2010)
14. Lakhotia, K., Harman, M., Gross, H.: AUSTIN: A tool for search based software testing for the

C language and its evaluation on deployed automotive systems. In: SSBSE (2010)
15. Lakhotia, K., Harman, M., Gross, H.: AUSTIN: An open source tool for search based software

testing of C programs. IST (2013)
16. Lakhotia, K., Tillmann, N., Harman, M., Halleux, J.: FloPSy — search-based floating point

constraint solving for symbolic execution. In: Proc. ICTSS (2010)
17. McMinn, P.: IGUANA: Input Generation Using Automated Novel Algorithms. a plug and play

research tool. Tech. Rep. CS-07-14, Dept. Computer Science, University of Sheffield, UK (2007)
18. McMinn, P., Wright, C.J., Kapfhammer, G.M.: The effectiveness of test coverage criteria for

relational database schema integrity constraints. ACM TOSEM (2015)
19. Pradhan, D., Wang, S., Ali, S., Yue, T.: Search-based cost-effective test case selection for manual

execution within time budget: An empirical study. In: Proc. GECCO (2016)
20. Qiu, X., Ali, S., Yue, T., Zhang, L.: Reliability-redundancy-location allocation with maximum

reliability and minimum cost using search techniques. IST (2016)
21. Yue, T., Ali., S.: Applying search algorithms for optimizing stakeholders familiarity and balanc-

ing workload in requirements assignment. In: Proc. GECCO (2014)
22. Yue, T., Ali, S., Lu, H., Nie., K.: Search-based decision ordering to facilitate product line engi-

neering of cyber-physical system. In: Proc. MODELSWARD (2016)
23. Zhong, H., Su, Z.: An empirical study on real bug fixes. In: Proc. ICSE (2015)


	

