
Evaluating Features for Machine Learning Detection
of Order- and Non-Order-Dependent Flaky Tests

Owain Parry
University of Sheffield

Gregory M. Kapfhammer
Allegheny College

Michael Hilton
Carnegie Mellon University

Phil McMinn
University of Sheffield

Abstract—Flaky tests are test cases that can pass or fail without
code changes. They often waste the time of software developers
and obstruct the use of continuous integration. Previous work
has presented several automated techniques for detecting flaky
tests, though many involve repeated test executions and a lot of
source code instrumentation and thus may be both intrusive and
expensive. While this motivates researchers to evaluate machine
learning models for detecting flaky tests, prior work on the
features used to encode a test case is limited. Without further
study of this topic, machine learning models cannot perform to
their full potential in this domain. Previous studies also exclude
a specific, yet prevalent and problematic, category of flaky tests:
order-dependent (OD) flaky tests. This means that prior research
only addresses part of the challenge of detecting flaky tests with
machine learning. Closing this knowledge gap, this paper presents
a new feature set for encoding tests, called FLAKE16. Using
54 distinct pipelines of data preprocessing, data balancing, and
machine learning models for detecting both non-order-dependent
(NOD) and OD flaky tests, this paper compares FLAKE16 to
another well-established feature set. To assess the new feature
set’s effectiveness, this paper’s experiments use the test suites of
26 Python projects, consisting of over 67,000 tests. Along with
identifying the most impactful metrics for using machine learning
to detect both types of flaky test, the empirical study shows how
FLAKE16 is better than prior work, including (1) a 13% increase
in overall F1 score when detecting NOD flaky tests and (2) a 17%
increase in overall F1 score when detecting OD flaky tests.

Index Terms—Software Testing, Flaky Tests, Machine Learning

I. INTRODUCTION

Flaky tests are test cases that can both pass or fail without
any changes to the test code or the code under test and are
therefore an unreliable indicator of software correctness [38].
They are a significant problem in software development be-
cause they may lead to time wasted investigating a non-existent
bug, or potentially more seriously, might mask the presence of
a genuine bug [42], [61], [66]. Their non-deterministic behav-
ior also hinders continuous integration: a study focused on the
Travis CI platform found that 47% of failing builds that were
manually restarted eventually passed without any changes,
indicating the presence of flaky tests [16]. As well as for open-
source development, flaky tests are a major problem for well-
known software companies, such as Google, Microsoft, and
Facebook [30], [39], [40]. A survey of software developers
found that 79% of respondents considered flaky tests to be
a moderate or serious problem, with 59% encountering them
on a monthly, weekly, or daily basis [18]. A specific category
of flaky tests, known as order-dependent (OD) flaky tests, are
influenced by previously executed test cases. Previous studies

have found these tests to be a very prevalent type of flaky test
[32], [34]. Their order-based non-determinism makes them a
major obstacle to the application of techniques that aim to
gather useful results from testing sooner, such as test case
prioritization, selection, and parallelization [6], [11], [33].

Given the problems associated with flaky tests, the research
community has developed automated techniques to detect
them. Many of these techniques involve a significant num-
ber of repeated test executions and some require extensive
instrumentation [6], [9], [17], [19], [32], [57], [66], mak-
ing them prohibitively expensive for practical deployment in
large software projects. This motivated researchers to develop
detection techniques based on machine learning models that
they trained using static features of test cases, such as their
length, complexity, and the presence of particular keywords
and identifiers [8], [44]. For instance, one study found that
combining static features with several dynamically-collected
characteristics, like execution time and line coverage, resulted
in significantly better detection performance at the relatively
minimal cost of a single, instrumented test suite run [3].

To date, prior studies have only evaluated a limited range of
features, while the broader literature has identified many more
test case characteristics that may be indicative of flakiness.
Without further evaluation of a wider range of features,
machine learning models cannot be used to their full potential
for detecting flaky tests. Moreover, previous studies trained
and evaluated models using datasets of flaky tests that do not
include OD flaky tests [7]. Yet, Lam et al. found that over
60% of their detected flaky tests were OD [32], suggesting
that previous studies may have labelled a large portion of flaky
tests as non-flaky when training models. This means they have
only considered a subset of the problem of flaky test detection.
Given the aforementioned difficulties caused by OD flaky tests,
their efficient detection has significant benefits [6], [11], [33].

This paper’s study evaluates the performance of 54 pipelines
of data preprocessing, data balancing, and machine learning
models for detecting flaky tests in 26 open-source Python
projects. Given previous successes with the random forest
model [3], [44], [56], it focuses on the decision tree model
and ensemble models thereof [20], [51]. It also introduces
FLAKE16, a new feature set for encoding test cases using
seven metrics from a previously established feature set [3]
and nine additional metrics, including the depth of the abstract
syntax tree of the test’s code and the maximum memory usage
during test case execution. The results show that FLAKE16

TABLE I
THE METRICS OF FLAKE16. THE “FF” COLUMN INDICATES IF THE FEATURE IS ALSO PART OF THE FLAKEFLAGGER FEATURE SET. THE “STATIC”

COLUMN INDICATES IF THE FEATURE CAN BE MEASURED WITHOUT EXECUTING THE TEST CASE. THE “IMPACT RANK” COLUMNS ARE THE RANKS OF
EACH FEATURE IN DESCENDING ORDER OF IMPACTFULNESS FOR DETECTING BOTH NOD AND OD FLAKY TESTS (SEE FIGURE 2 FOR MORE DETAILS).

Impact Rank

Feature Description FF Static NOD OD

1 Covered Lines Number of lines covered. ✓ 8 6
2 Covered Changes Total number of times each covered line has been modified in the last 75 commits. ✓ 3 5
3 Source Covered Lines Number of lines covered that are not part of test cases. ✓ 7 7
4 Execution Time Elapsed wall-clock time of the test case execution. ✓ 5 9
5 Read Count Number of times the filesystem had to perform input [28]. 6 2
6 Write Count Number of times the filesystem had to perform output [28]. 4 1
7 Context Switches Number of voluntary context switches. 10 8
8 Max. Threads Peak number of concurrently running threads (excluding the main thread). 1 11
9 Max. Memory Peak memory usage. 11 4

10 AST Depth Maximum depth of nested program statements in the test case code. ✓ 2 13
11 Assertions Number of assertion statements in the test case code. ✓ ✓ 14 3
12 External Modules Number of non-standard modules (i.e., libraries) used by the test case. ✓ 16 16
13 Halstead Volume A measure of the size of an algorithm’s implementation [2], [43], [45]. ✓ 15 14
14 Cyclomatic Complexity Number of branches in the test case code [21], [43], [45]. ✓ 12 12
15 Test Lines of Code Number of lines in the test case code [43], [45]. ✓ ✓ 9 10
16 Maintainability A measure of how easy the test case code is to support and modify [48], [64]. ✓ 13 15

offered a 13% increase in overall F1 score compared to
the previous feature set when detecting non-order-dependent
(NOD) flaky tests. The experiments also study the same
machine learning pipelines with both feature sets for the task
of detecting OD flaky tests. In this setup, FLAKE16 offered
a 17% increase in the overall F1 score. Finally, the paper
studies the impact of each FLAKE16 feature on the models’
predictions, revealing that the peak number of concurrently
running threads and the number of read- and write-related
system calls during test execution are the most valuable
features for detecting NOD and OD flaky tests, respectively.
In summary, the main contributions of this paper are:
Contribution 1: New Feature Set. The paper introduces
FLAKE16, a new feature set for machine learning-based flaky
test detection. The evaluation demonstrates an improved detec-
tion performance for both NOD and OD flaky tests compared
to a previous feature set, as further detailed in Section II.

Contribution 2: Novel Evaluation. Our evaluation of 54
machine learning pipelines is the first to consider the detection
of OD flaky tests, offering a more complete assessment of the
applicability of machine learning to the problem of flaky test
detection. See Section III for more details on this contribution.

Contribution 3: Findings and Implications. Leveraging the
empirical results, the paper surfaces findings with implications
relevant to both the research community and software develop-
ers, including the most impactful test case metrics for detecting
flaky tests. See Sections IV and V for details on these findings.

Contribution 4: Framework and Data. To collect the data re-
quired to train the machine learning pipelines and perform the
experiments, we developed our own comprehensive framework
of tools, called FLAKE16FRAMEWORK. To identify flaky
tests, we used the FLAKE16FRAMEWORK to execute 5,000
times the test suites for 26 programs containing 67,000 test
cases in total. Supporting the replication of this paper’s results

and further investigations into the use of machine learning for
flaky test detection, we make FLAKE16FRAMEWORK and all
of our data available as part of our replication package [49].

II. THE FLAKE16 FEATURE SET

Alshammari et al. [3] proposed a range of features for en-
coding test cases in machine learning-based flaky test detection
and split them into two groups. These were eight boolean
features indicating the presence of test smells [60], and eight
numerical features measuring a mixture of static and dynamic
test case properties. They found the test smell features to be
of limited value and excluded them from their evaluation of
their flaky test detection framework, FLAKEFLAGGER. One of
the remaining eight features, the total number of production
classes covered by a test case, was not applicable in the context
of our study. This is because the dataset of test cases used by
Alshammari et al. are from Java projects [7] and ours are from
Python projects. In Java, classes are a central construct for
building programs, whereas in Python, they are less critical and
it is possible to write programs without them [13]. We refer to
the remaining seven features as the FLAKEFLAGGER feature
set, which is subsumed by FLAKE16. One of these features
captures the “churn” of the lines covered by a test case, that
is, how frequently they are changed. This requires a window
of past commits to consider. Alshammari et al. evaluated eight
windows and found 75 commits to be the most informative,
and thus we selected this value for this paper’s study. Beyond
these seven features, FLAKE16 contains nine more static and
dynamic test case metrics, with Table I providing a summary.

Several empirical studies identified files as a potential vector
for OD flaky tests to arise [6], [9], [19], [38], [66]. In
particular, Zhang et al. [66] found that 39% of OD flaky tests
were caused by side effects left behind by other test cases in
external resources, such as files and databases. Furthermore,
flaky tests specifically caused by complications during input

and output operations were one of the flaky test categories
presented by Luo et al. [38]. This motivated our inclusion of
read count and write count in FLAKE16. Specifically, these
measure the number of read- and write-related system calls
during test execution. Another finding that many empirical
studies have in common is that asynchronous operations and
concurrency are very frequent causes of flaky tests [18], [31],
[38], [50]. For this reason, we incorporated context switches
and maximum threads into FLAKE16. The former measures
the number of voluntary context switches performed during
test case execution. These occur when a process gives up
its CPU time because it has nothing to do, which would
occur when a test case sleeps for a fixed amount of time.
Previous studies have identified this as a hallmark of flaky tests
in the asynchronous category [18], [38]. We also integrated
maximum memory into FLAKE16. This feature measures the
peak memory usage during test case execution, a property
identified by an author of the Google Testing Blog to be
correlated with the likelihood of a test case being flaky [35].

The FLAKE16 feature set also contains four additional static
metrics that aim to capture the size and complexity of the test
case code. A recent study identified this general property to be
a possible indicator of flaky tests [45]. With that said, another
recent study cast doubt on the reliability of various code
complexity metrics for measuring program comprehension
difficulty [43]. Nevertheless, this does not necessarily imply
that they would be of no use for detecting flaky tests, so this
paper evaluates them. The first of these is Abstract Syntax Tree
(AST) depth. Specifically, this feature measures the maximum
depth of nested program statements, such as if statements and
for loops. The second is Halstead volume, which attempts to
capture the “size” of an algorithm’s implementation. Where N
is the total number of operators and operands in the test case
code and η is the number of distinct operators and operands,
Halstead volume is given by Nlog2(η) [2]. The third static
metric is cyclomatic complexity, which measures the number
of branches in a piece of code [21]. In Python, and many
other programming languages, an if statement corresponds
to a branch and so would increase the cyclomatic complexity
by 1. Other examples of branches include for and while
statements, since they both evaluate a condition before every
iteration. The fourth metric is maintainability. This is an
empirical measure of how easy a piece of code is to support
and modify [64]. There are several formulations, though we
used the one implemented by the RADON library [48]. We
selected this library because it also contains implementations
for calculating Halstead volume and cyclomatic complexity.

III. EVALUATION

We designed and conducted experiments to answer the
following three research questions regarding the benefit of
features during machine learning-based flaky test detection:

RQ1. Compared to the features used by FLAKEFLAGGER,
does the FLAKE16 feature set improve the performance of
flaky test case detection with machine learning models?

TABLE II
THE 26 OPEN-SOURCE PYTHON PROJECTS EXAMINED IN THIS PAPER’S

STUDY. THE “STARS” COLUMN IS THE NUMBER OF TIMES A GITHUB
USER HAS INDICATED THEIR INTEREST IN THE PROJECT [52]. THE

“TESTS” COLUMN IS THE TOTAL NUMBER OF TEST CASES, BOTH FLAKY
AND NON-FLAKY. THE “NOD” AND “OD” COLUMNS ARE THE NUMBER

OF NON-ORDER-DEPENDENT AND ORDER-DEPENDENT FLAKY TESTS.

GitHub Repository # Stars # Tests # NOD # OD

apache/airflow 23175 3458 66 293
celery/celery 17952 2365 - 15
conan-io/conan 5274 3707 - 13
encode/django-rest-framework 21906 1402 - 1
spesmilo/electrum 5154 544 1 1
Flexget/Flexget 1342 1335 1 4
fonttools/fonttools 2850 3456 1 42
graphql-python/graphene 6810 347 - 1
facebookresearch/hydra 4861 1540 - 19
HypothesisWorks/hypothesis 5379 4386 5 6
ipython/ipython 14982 846 6 304
celery/kombu 2221 1025 2 23
apache/libcloud 1788 9840 3 133
Delgan/loguru 9838 1255 4 21
mitmproxy/mitmproxy 24702 1231 - 17
python-pillow/Pillow 8983 2583 - 26
PrefectHQ/prefect 6897 7038 25 20
PyGithub/PyGithub 4664 711 - 4
Pylons/pyramid 3593 2633 - 4
psf/requests 46050 537 5 -
scikit-image/scikit-image 4525 6281 - 12
mwaskom/seaborn 8772 1028 1 8
pypa/setuptools 1439 704 1 23
sunpy/sunpy 629 2072 - 2
urllib3/urllib3 2788 1900 15 1
xonsh/xonsh 5133 4782 9 19

Total 241707 67006 145 1012

RQ2. Can machine learning models be applied to effectively
detect order-dependent flaky test cases?

RQ3. Which features of FLAKE16 are the most impactful?

A. Data Collection

To evaluate the performance of any machine learning model
for detecting flaky tests, we needed a labelled dataset of test
cases. To that end, we sampled 26 popular Python projects,
most of which are considered critical to open-source infras-
tructure [41]. In total, these 26 projects, listed in Table II, gave
us a dataset of over 67,000 test cases. In order to train and
evaluate a machine learning classifier, we needed to label each
test case as non-flaky, NOD flaky, or OD flaky. To that end, we
created a framework of tools, called FLAKE16FRAMEWORK,
to automatically execute each project’s test suite 2,500 times
in a consistent order and an additional 2,500 times in a random
order. For reproducibility and isolation between test suite runs,
FLAKE16FRAMEWORK installs each project inside of a fully-
specified virtual environment [63] to produce a Docker image
[15], which it uses to create a separate container for each test
suite run. The framework also records the outcome (i.e., pass
or fail) of every test during each test suite execution. It labels
a test as NOD flaky if it has an inconsistent outcome during
the runs in a consistent order. Otherwise, it labels a test as
OD flaky if it has an inconsistent outcome during the runs in

0 500 1,000 1,500 2,000 2,500
20

60

100

Test Suite Runs Performed

%
Fl

ak
y

Te
st

s
D

et
ec

te
d

NOD
OD

Fig. 1. The relationship between the number of test suites runs performed by
FLAKE16FRAMEWORK and the percentage of flaky tests it identified, both
NOD and OD. As the curves show, the relationship in both cases is sublinear.

random orders. Failing that, it labels a test as non-flaky. This
is an established practice for identifying flaky tests [23], [34].

Given the non-deterministic nature of flaky tests, it is
impossible to label a test case as non-flaky with complete
certainty. Naturally, confidence increases with the number
of test suite runs, but so too does the computational cost.
Alshammari et al. [3] executed test suites 10,000 times. Based
on their findings, the cumulative number of detected flaky
tests appears sublinearly related to the number of test suite
runs. In other words, continuing to re-execute a test suite gives
diminishing returns with respect to the confidence of labelling
a test case as non-flaky. Our study confirms these findings, for
both NOD and OD flaky tests, as illustrated by the curves in
Figure 1. As such, we selected a smaller number of test suite
runs to reduce the time to finish the labelling process. Despite
this, labelling still took over four weeks of computational time
on a computer with a 24-core AMD Ryzen 5900X CPU.

As well as having labels for each test case, we also needed
to measure values for each of the metrics of FLAKE16. To
that end, we designed FLAKE16FRAMEWORK to perform the
necessary static analysis on the source code of every test case
and to instrument test case execution to collect the dynamic
features. We implemented this with the help of several existing
Python libraries. To collect most of the static metrics, we
used the RADON library [48]. To determine the number of
external modules used by a test case, we implemented our own
approach that analyzes the AST of a test case. To measure line
coverage data, we used COVERAGE.PY [14]. For the majority
of the remaining dynamic features, we used PSUTIL [47].
In keeping with previous work [3], FLAKE16FRAMEWORK
executed each of the 26 test suites just once to measure these
values to keep its computational cost as low as possible. While
there may be some expected variance in these values, we leave
it as future work to investigate if the repeated measurement of
these features improves the performance of flaky test detection.

B. Data Preprocessing

Preprocessing of raw feature data is a typical component of
machine learning pipelines [22], [65]. To that end, we eval-
uated two common data preprocessing techniques. The first
was scaling (also known as standardization), which, for each

feature, involves subtracting the mean over the entire dataset
and dividing by the standard deviation. This has the effect of
“centering” the distribution of each feature with a mean of zero
and a variance of one, such as a standard normal distribution.
This is a common requirement for many machine learning
models [46]. The second was principal component analysis
(PCA) [1]. This is a technique used to transform a dataset such
that each new feature corresponds to a principal component.
The principal components of a dataset can be thought of as an
ordered set of orthogonal vectors representing axes that best
capture the variance of the data. The first principal component
captures the most variance and the subsequent components
capture increasingly less. A common use of PCA is to reduce
the number of features in a dataset while sacrificing as little
data as possible. This is known as dimensionality reduction
[62]. Because the principal components are orthogonal to one
another, PCA also decorrelates the features of a dataset. Since
the dimensionality of the dataset is relatively low, and Table
III shows that many of FLAKE16’s features are correlated,
decorrelation is our primary use case for PCA.

C. Data Balancing

As shown by Table II, the number of non-flaky tests in
our dataset vastly outnumbers both the NOD and OD flaky
tests. Training machine learning models with imbalanced data
such as ours potentially limits their performance [36], [58].
To address this, we evaluated five data balancing techniques.
Data balancing techniques can be split into two categories:
those that undersample (reduce) the majority class (non-flaky),
and those that oversample (increase) the minority class (flaky).
We evaluated two undersampling, one oversampling, and two
combined techniques. The first undersampling technique re-
moves the non-flaky samples within Tomek links of the dataset.
A Tomek link occurs between two samples when a sample of
one class is the nearest neighbor of a sample of the other [59].
The second technique, edited nearest-neighbors, removes non-
flaky samples whose nearest neighbors are all flaky. With a
neighborhood of only one sample, edited nearest-neighbors is
equivalent to the previous technique. We used a neighborhood
of three, our implementation’s default. For oversampling,
we evaluated the synthetic minority oversampling technique
(SMOTE) [12], which generates synthetic flaky samples by
interpolation. The two combined techniques we evaluated were
the combination of SMOTE with Tomek links and edited
nearest-neighbors. In both instances, SMOTE is applied first
and the undersampling technique acts as a data cleaning
method, rather than to undersample the non-flaky samples [5].
To ensure the correctness of these balancing techniques, we
used those in the IMBALANCED-LEARN Python library [27].

D. Machine Learning Models

For the classification of test cases as flaky or non-flaky,
we evaluated three machine learning models. Previous studies
have found the random forest model [10] to be particularly
performant in this domain [3], [44]. Random forest is an
ensemble model, which combines many base models, in this

TABLE III
SPEARMAN RANK-ORDER CORRELATION COEFFICIENTS BETWEEN EACH PAIR OF FEATURES IN FLAKE16. VALUES RANGE BETWEEN -1 AND 1, WITH 0

INDICATING NO CORRELATION AND -1 OR 1 INDICATING AN EXACT MONOTONIC RELATIONSHIP. A NEGATIVE VALUE INDICATES THAT AS THE FEATURE
IN THE ROW INCREASES, THE FEATURE IN THE COLUMN DECREASES. DARKER SHADED CELLS INDICATE A GREATER MAGNITUDE OF CORRELATION.

C
ov

er
ed

L
in

es

C
ov

er
ed

C
ha

ng
es

So
ur

ce
C

ov
er

ed
L

in
es

E
xe

cu
tio

n
Ti

m
e

R
ea

d
C

ou
nt

W
ri

te
C

ou
nt

C
on

te
xt

Sw
itc

he
s

M
ax

. T
hr

ea
ds

M
ax

. M
em

or
y

A
ST

D
ep

th

A
ss

er
tio

ns

E
xt

er
na

l M
od

ul
es

H
al

st
ea

d
Vo

lu
m

e

C
yc

lo
m

at
ic

C
om

pl
ex

ity

Te
st

L
in

es
of

C
od

e

M
ai

nt
ai

na
bi

lit
y

Covered Lines 1.00 0.72 1.00 0.48 -0.05 0.32 0.50 0.15 0.21 -0.09 -0.07 -0.30 -0.11 -0.08 0.15 0.09
Covered Changes 0.72 1.00 0.72 0.41 -0.01 0.25 0.35 0.13 0.21 0.04 0.14 -0.14 0.08 0.13 0.17 -0.09
Source Covered Lines 1.00 0.72 1.00 0.48 -0.05 0.32 0.49 0.14 0.21 -0.10 -0.06 -0.31 -0.10 -0.07 0.13 0.08
Execution Time 0.48 0.41 0.48 1.00 0.55 0.48 0.48 0.30 0.76 0.03 0.17 -0.01 0.13 0.14 0.09 -0.12
Read Count -0.05 -0.01 -0.05 0.55 1.00 0.40 0.12 0.18 0.73 0.17 0.21 0.30 0.21 0.22 0.12 -0.18
Write Count 0.32 0.25 0.32 0.48 0.40 1.00 0.52 0.32 0.45 0.00 -0.07 -0.06 -0.04 -0.07 0.13 0.04
Context Switches 0.50 0.35 0.49 0.48 0.12 0.52 1.00 0.31 0.36 -0.11 -0.04 -0.18 -0.05 -0.06 0.09 0.07
Max. Threads 0.15 0.13 0.14 0.30 0.18 0.32 0.31 1.00 0.26 0.05 -0.01 0.05 0.01 0.00 0.10 -0.01
Max. Memory 0.21 0.21 0.21 0.76 0.73 0.45 0.36 0.26 1.00 0.10 0.21 0.16 0.20 0.20 0.06 -0.16
AST Depth -0.09 0.04 -0.10 0.03 0.17 0.00 -0.11 0.05 0.10 1.00 0.21 0.16 0.24 0.42 0.42 -0.26
Assertions -0.07 0.14 -0.06 0.17 0.21 -0.07 -0.04 -0.01 0.21 0.21 1.00 0.15 0.73 0.89 0.30 -0.69
External Modules -0.30 -0.14 -0.31 -0.01 0.30 -0.06 -0.18 0.05 0.16 0.16 0.15 1.00 0.28 0.18 0.18 -0.24
Halstead Volume -0.11 0.08 -0.10 0.13 0.21 -0.04 -0.05 0.01 0.20 0.24 0.73 0.28 1.00 0.75 0.35 -0.91
Cyclomatic Complexity -0.08 0.13 -0.07 0.14 0.22 -0.07 -0.06 0.00 0.20 0.42 0.89 0.18 0.75 1.00 0.43 -0.72
Test Lines of Code 0.15 0.17 0.13 0.09 0.12 0.13 0.09 0.10 0.06 0.42 0.30 0.18 0.35 0.43 1.00 -0.39
Maintainability 0.09 -0.09 0.08 -0.12 -0.18 0.04 0.07 -0.01 -0.16 -0.26 -0.69 -0.24 -0.91 -0.72 -0.39 1.00

case decision tree [51]. Decision tree is a non-parametric
model that learns simple if-then-else decision rules from the
training data, forming a binary tree. In this context, their output
is the estimated probability of a test case being non-flaky. The
random forest model trains each decision tree on a random
sample with replacement of the training data, that is, a sample
where individual data points can appear more than once. The
overall classification is based on the average of their estimated
probabilities. A related model, extremely randomized trees
[20], also known as extra trees, trains trees on random samples
without replacement and introduces additional randomization
in how they are trained. We evaluated random forest and
extra trees, as well as the base decision tree model, using
the implementations provided by SCIKIT-LEARN [53].

E. Methodology

We used the FLAKE16FRAMEWORK to evaluate all com-
binations of data preprocessing, data balancing, and machine
learning model, including no preprocessing and no balanc-
ing. This resulted in 54 machine learning pipelines. The
framework evaluated these using both the FLAKE16 and the
FLAKEFLAGGER feature sets and applied them to two binary
classification problems, non-flaky or NOD flaky and non-flaky
or OD flaky, culminating in 216 models. It used stratified 10-
fold cross validation for model training and testing, as done by
Alshammari et al. in their evaluation of their FLAKEFLAGGER
framework [3]. This creates 10 folds, in which 90% of the
dataset is used for training and 10% is used for testing. The
class balance of each fold roughly follows that of the entire
dataset, and FLAKE16FRAMEWORK applied data balancing to

the training set only. This is so the model testing accurately
reflects the imbalanced nature of the classification problem.
After training the model, the framework applied it to each test
case of the testing set, resulting in a prediction of flaky or non-
flaky. Since the testing portion of each fold is unique, after 10
folds every test case in the dataset has a predicted label.

Where flaky is the positive label and a predicted label for a
test case is true if it matches the label assigned to it during data
collection, FLAKE16FRAMEWORK enumerated the number of
false positives, false negatives, and true positives, for the test
cases of each project and for the entire dataset. From these,
it calculated the precision, the ratio of true positives to all
positives, and the recall, the ratio of true positives to the sum
of true positives and false negatives. In other words, precision
is the fraction of genuine flaky tests among all test cases the
model labelled as flaky and recall is the fraction of genuine
flaky tests that the model labelled as flaky. The framework
also calculated the F1 score, or the harmonic mean of these
two metrics. These are all common metrics used in previous
studies of machine learning to detect flaky tests [3], [8], [44].
The F1 score metric is particularly well-suited to imbalanced
binary classification problems, like the one in this paper, since
it penalizes significant differences between a model’s precision
and recall. This is important because a model that trivially la-
bels all test cases as non-flaky would achieve maximum recall
but very poor precision. We answered RQ1 by comparing the
performance of the best pipeline using the FLAKEFLAGGER
feature set to the best using the FLAKE16 set, for both the
NOD and OD classification problems. We answered RQ2 by
specifically focusing on the OD classification problem.

TABLE IV
THE TOP 10 PIPELINES WITH BOTH FEATURE SETS FOR DETECTING BOTH NOD AND OD FLAKY TESTS. TRAIN TIME AND TEST TIME ARE IN SECONDS.

FLAKEFLAGGER FLAKE16

Pre. Balancing Model Train Time Test Time F1 Pre. Balancing Model Train Time Test Time F1

NOD

None Tomek Links Extra Trees 8.41 0.27 0.46 PCA SMOTE Extra Trees 133.72 0.57 0.52
Scaling None Extra Trees 11.73 0.37 0.44 PCA SMOTE Tomek Extra Trees 100.77 0.26 0.52
None SMOTE Tomek Extra Trees 41.17 0.26 0.43 Scaling SMOTE Tomek Extra Trees 123.84 0.59 0.51
None SMOTE Extra Trees 21.12 0.21 0.43 Scaling SMOTE Extra Trees 139.19 0.49 0.51
None ENN Extra Trees 6.10 0.13 0.43 None SMOTE Random Forest 269.69 0.22 0.48
None None Extra Trees 14.43 0.49 0.43 None ENN Extra Trees 34.94 0.25 0.48
Scaling ENN Extra Trees 10.58 0.46 0.43 PCA SMOTE ENN Extra Trees 146.26 0.53 0.48
Scaling Tomek Links Extra Trees 4.78 0.16 0.43 Scaling SMOTE Tomek Random Forest 209.72 0.25 0.48
Scaling SMOTE Tomek Extra Trees 41.20 0.56 0.42 None SMOTE Tomek Extra Trees 53.42 0.20 0.48
PCA Tomek Links Extra Trees 13.11 0.27 0.42 PCA SMOTE Tomek Random Forest 334.66 0.32 0.48

OD

None SMOTE Tomek Extra Trees 70.29 1.23 0.47 Scaling SMOTE Random Forest 148.34 0.52 0.55
None SMOTE Extra Trees 75.57 1.16 0.46 Scaling SMOTE Tomek Random Forest 173.06 0.65 0.55
None SMOTE Tomek Random Forest 83.82 0.81 0.46 Scaling SMOTE Extra Trees 150.09 0.92 0.54
None SMOTE Random Forest 85.06 0.28 0.45 Scaling SMOTE Tomek Extra Trees 155.38 1.49 0.54
None ENN Extra Trees 13.75 0.80 0.45 None SMOTE Extra Trees 128.18 1.24 0.53
Scaling ENN Extra Trees 13.40 0.92 0.45 Scaling ENN Extra Trees 37.62 0.79 0.52
Scaling Tomek Links Extra Trees 18.03 1.08 0.45 None SMOTE Tomek Extra Trees 38.68 0.43 0.52
Scaling None Extra Trees 21.20 1.17 0.44 None Tomek Links Extra Trees 27.47 0.62 0.51
None None Extra Trees 12.92 0.69 0.44 Scaling Tomek Links Extra Trees 29.62 0.79 0.51
None Tomek Links Extra Trees 14.50 0.70 0.44 None ENN Extra Trees 27.93 0.80 0.50

To rank each feature of FLAKE16 in terms of its impact,
we used the Shapely Additive Explanations (SHAP) tech-
nique [37]. This automated technique leverages concepts from
game theory to quantify the contribution that a feature has on
the output of a model. SHAP requires a dataset (i.e., a matrix
where each row is a data point and each column represents
a feature) and a trained model, and it returns a matrix of
SHAP values in the same shape as the dataset. Each column
of the SHAP values matrix corresponds to the impact that the
respective feature had on the decision of the trained model for
each data point. In our case, FLAKE16FRAMEWORK applied
SHAP to estimate the contribution of each feature of FLAKE16
to a model’s estimated probability of each test case being non-
flaky. It did this for the best non-PCA pipelines for both test
case classification problems when using FLAKE16.

Since the features of a PCA-transformed dataset correspond
to a linear combination of the original features [1], it would be
difficult to relate their impact back to the features of FLAKE16.
To answer RQ3, FLAKE16FRAMEWORK quantified the im-
pact of each feature for detecting both NOD and OD flaky tests
by taking the mean absolute value of each column of the SHAP
values matrices for both pipelines. A common alternative
technique we could have used is to calculate the permutation
importance of each feature. Given a trained model, this would
involve shuffling the values of each feature across the dataset
and measuring the impact this has on the performance of the
model when applied to the shuffled dataset (e.g., the F1 score).
Yet, this technique can give misleading results when features
are correlated [26], as Table III shows is the case for the
features used to predict whether or not a test is flaky.

F. Threats to Validity

This section considers the potential threats to the validity of
this paper’s evaluation and discusses how we mitigated them.
First, during data collection the FLAKE16FRAMEWORK could
have labelled some flaky tests as non-flaky. Given the non-
deterministic nature of flaky tests, it is impossible to fully
rectify this issue, although we mitigated it by performing
as many test suite runs as possible within the limits of the
computational resources available to us. Furthermore, some
specific categories of flaky tests are unlikely to be manifested
by rerunning alone [38], [54]. The only category we made spe-
cial arrangements to detect were OD flaky tests; we consider
other categories requiring additional means to identify out of
the scope of this study. Second, FLAKE16FRAMEWORK could
have contained bugs, which may have impacted the results of
our evaluation. To that end, we used well-established Python
libraries for the bulk of its functionality. These included COV-
ERAGE.PY [14] to measure line coverage, PSUTIL [47] to mea-
sure many other dynamic properties of test cases, and SCIKIT-
LEARN [53] for our model implementations. These are all
popular open-source projects with many contributors, giving
us confidence that any bugs would be identified, documented,
and patched in a timely manner. We also wrote unit tests for
greater confidence in the correctness of the bespoke elements
of FLAKE16FRAMEWORK. Third, individual projects with
significantly more test cases than others could bias the overall
results. For example, AIRFLOW had the highest number of
NOD flaky tests at 66, or 264% more than that of the second
highest. To resolve this concern, we calculated performance
metrics with respect to each individual project.

TABLE V
FOR NOD FLAKY TESTS, THE PER-PROJECT COMPARISON OF THE BEST

PIPELINE FOR BOTH FEATURE SETS.

In this table, FP, FN, and TP are false positives, false negatives, and true
positives, respectively. Finally, Pr stands for precision and Re is recall.

FLAKEFLAGGER FLAKE16

Project FP FN TP Pr Re F1 FP FN TP Pr Re F1

airflow 7 37 29 0.81 0.44 0.57 20 30 36 0.64 0.55 0.59
ipython 0 4 2 1.00 0.33 0.50 3 2 4 0.57 0.67 0.62
loguru 1 2 2 0.67 0.50 0.57 1 2 2 0.67 0.50 0.57
prefect 2 17 8 0.80 0.32 0.46 5 12 13 0.72 0.52 0.60
requests 1 3 2 0.67 0.40 0.50 1 3 2 0.67 0.40 0.50
xonsh 4 4 5 0.56 0.56 0.56 3 5 4 0.57 0.44 0.50

Total 16 97 48 0.75 0.33 0.46 49 76 69 0.58 0.48 0.52

IV. EMPIRICAL RESULTS

RQ1. Compared to the features used by FLAKEFLAG-
GER, does the FLAKE16 feature set improve the perfor-
mance of flaky test case detection with machine learning
models? The top half of Table IV shows the top 10 pipelines
for detecting NOD flaky tests with both the FLAKEFLAG-
GER and FLAKE16 feature sets. The best pipeline with the
FLAKE16 feature set was preprocessing with PCA, balancing
with SMOTE, and extra trees as the model. Its F1 score was
13% higher than the best pipeline with the FLAKEFLAGGER
feature set. Table V shows the per-project performance of
the best pipelines with both feature sets. This table excludes
projects for which we could not calculate precision, recall,
or F1 score due to a division by zero. For all the included
projects, with the exception of XONSH, the F1 score is either
unchanged or higher with FLAKE16. Overall, the best pipeline
with FLAKE16 had a better trade-off between precision and
recall, whereas the best pipeline with the FLAKEFLAGGER
feature set had significantly greater precision than recall, which
was relatively poor. This result suggests that the FLAKE-
FLAGGER pipeline was particularly conservative with regard to
labelling a test case as flaky. The bottom half of Table IV gives
the best pipelines for the OD classification problem. In this
case, the best pipeline with FLAKE16 had an F1 score that was
17% greater than the best pipeline with the FLAKEFLAGGER
feature set. Table VI gives the per-project scores for these
two pipelines. Once again, we excluded projects if we could
not calculate precision, recall, or F1 score. For 11 of the 18
projects listed, the F1 score was greater when using FLAKE16.
Overall, the best pipeline with FLAKE16 had a recall that was
36% greater than that of the FLAKEFLAGGER feature set and a
precision that was unchanged, indicating a clear improvement
in the performance of the flaky test detection method.

Conclusion for RQ1. The FLAKE16 feature set offered
a 13% increase in overall F1 score when detecting NOD
flaky tests and a 17% increase when detecting OD flaky
tests. These results indicate that the FLAKE16 feature
set improves machine learning-based flaky test detection
performance compared to the FLAKEFLAGGER feature set.

TABLE VI
FOR OD FLAKY TESTS, THE PER-PROJECT COMPARISON OF THE BEST

PIPELINE FOR BOTH FEATURE SETS.

In this table, FP, FN, and TP are false positives, false negatives, and true
positives, respectively. Finally, Pr stands for precision and Re is recall.

FLAKEFLAGGER FLAKE16

Project FP FN TP Pr Re F1 FP FN TP Pr Re F1

airflow 89 94 199 0.69 0.68 0.69 133 55 238 0.64 0.81 0.72
celery 6 7 8 0.57 0.53 0.55 4 9 6 0.60 0.40 0.48
conan 23 7 6 0.21 0.46 0.29 14 8 5 0.26 0.38 0.31
Flexget 2 3 1 0.33 0.25 0.29 0 3 1 1.00 0.25 0.40
fonttools 19 5 37 0.66 0.88 0.76 21 1 41 0.66 0.98 0.79
hydra 19 9 10 0.34 0.53 0.42 4 13 6 0.60 0.32 0.41
ipython 96 248 56 0.37 0.18 0.25 274 126 178 0.39 0.59 0.47
kombu 6 13 10 0.62 0.43 0.51 1 15 8 0.89 0.35 0.50
libcloud 62 91 42 0.40 0.32 0.35 103 78 55 0.35 0.41 0.38
loguru 4 2 19 0.83 0.90 0.86 6 6 15 0.71 0.71 0.71
mitmproxy 10 11 6 0.38 0.35 0.36 5 12 5 0.50 0.29 0.37
Pillow 14 20 6 0.30 0.23 0.26 21 11 15 0.42 0.58 0.48
prefect 9 16 4 0.31 0.20 0.24 1 16 4 0.80 0.20 0.32
PyGithub 0 1 3 1.00 0.75 0.86 1 1 3 0.75 0.75 0.75
scikit0image 31 3 9 0.23 0.75 0.35 2 7 5 0.71 0.42 0.53
seaborn 11 6 2 0.15 0.25 0.19 1 6 2 0.67 0.25 0.36
setuptools 5 5 18 0.78 0.78 0.78 4 7 16 0.80 0.70 0.74
xonsh 10 12 7 0.41 0.37 0.39 8 13 6 0.43 0.32 0.36

Total 440 569 443 0.50 0.44 0.47 608 401 611 0.50 0.60 0.55

RQ2. Can machine learning models be applied to effec-
tively detect order-dependent flaky test cases? As shown
in the bottom half of Table IV, the most performant pipeline
for detecting OD flaky tests used the FLAKE16 feature set
with scaling for preprocessing, SMOTE for balancing, and
random forest as the model, and achieved an F1 score of
0.55. Compared to the best NOD pipeline, its overall precision
was 14% lower and its recall was 25% higher, resulting in an
F1 score that was just 6% higher. These differences are too
marginal to conclude that machine learning models are any
better at detecting OD flaky tests than NOD flaky tests, but
rather suggests that their performance at both classification
problems was roughly the same. For the best OD pipeline, the
per-project F1 scores showed a significant degree of variance,
achieving an F1 score of just 0.31 for CONAN and up to 0.79
for FONTTOOLS. Comparatively, the best NOD pipeline had
a much lower per-project variance, though the sample size
of projects in this case is rather small to draw any reliable
conclusions. This per-project variance is not unique to our
study [3], [8], however ours is the first to report it in the
context of using machine learning to detect OD flaky tests.

Conclusion for RQ2. The performance of the best OD
pipeline was broadly similar to that of the best NOD
pipeline, suggesting that machine learning models are just
as applicable to the task of detecting OD flaky tests as they
are to detecting NOD flaky tests.

RQ3. Which features of FLAKE16 are the most impact-
ful? Figure 2 shows each feature of FLAKE16 in descending
order of their mean absolute SHAP value in the context of
detecting both NOD and OD flaky tests (see Section III-E

for details on how these are calculated). The lines connecting
the boxes indicate how their ranks differ between the two
classification problems. As indicated by the volume of lines
with steep gradients, the difference is significant. For detecting
NOD flaky tests, the maximum threads feature was the most
impactful by a considerable margin. For OD flaky tests, the
number of read- and write-related system calls were the
most impactful metrics. All these features are exclusive to
FLAKE16, which could partially explain why it improved
detection performance compared to the FLAKEFLAGGER fea-
ture set. In general, the dynamic features occupy the higher
ranks and the static features occupy the lower ranks for both
classification problems. This shows that the static features had
less influence on the models’ decisions, implying that they
may be less useful for detecting flaky tests. Clear exceptions
to this are the AST depth feature, which was the second most
impactful for NOD flaky tests, the number of assertions, which
was third for OD flaky tests, and test lines of code, which
occupied the lower-middle ranks in both instances.

Conclusion for RQ3. The most impactful feature when
detecting NOD flaky tests was the peak number of con-
currently running threads during test case execution. When
detecting OD flaky tests, the number of read- and write-
related system calls were the most impactful. In general,
the dynamic features were more impactful than the static
features, though there were notable exceptions to this.

V. DISCUSSION

A. General Model Performance

The best pipeline for detecting NOD flaky tests achieved
an F1 score of 0.52 and the best for OD flaky tests achieved
an F1 score of 0.55. For a binary classification problem with
balanced classes, an F1 score of 0.50 can be trivially attained
by randomly guessing labels with uniform class probabilities.
Yet, both of this paper’s classification problems are signifi-
cantly imbalanced. For the NOD problem, flaky tests account
for just 0.02% of the entire dataset. For the OD problem, flaky
tests represent 1.5%. In both cases, we would expect uniform
random guessing to yield an F1 score significantly lower
than 0.5. Considering the NOD problem, we would expect
random guessing to render half of the 66,861 non-flaky test
cases as true negatives and half as false positives. Similarly,
we would expect half of the 145 flaky test cases to become
false negatives and the other half true positives. Applying the
calculations for precision and recall described in Section III-E,
this strategy would score 0.5 and 0.002 respectively, giving an
ultimate F1 score of 0.004. The F1 score would be similarly
low for the OD problem and for both problems using other
trivial approaches, such as guessing according to class prior
probabilities or labelling all test cases as non-flaky. Therefore,
the two pipelines that use FLAKE16 are significantly better
suited to flaky test detection than these trivial approaches.

Alshammari et al. [3], who presented the FLAKEFLAGGER
framework, recorded an F1 score of 0.66 when detecting NOD

Read Count

Write Count

Context Switches

Maintainability

Execution Time

Covered Changes

Max. Threads

Max. Memory

Source Covered Lines

Covered Lines

Cyclomatic Complexity

Test Lines of Code

Assertions

Halstead Volume

External Modules

0.064

0.042

0.040

0.036

0.034

0.034

0.033

0.032

0.032

0.026

0.025

0.023

0.020

0.016

0.012

AST Depth

Read Count

Write Count

Context Switches

Maintainability

Execution Time

Covered Changes

Max. Threads

Max. Memory

Source Covered Lines

Covered Lines

Cyclomatic Complexity

Test Lines of Code

Assertions

Halstead Volume

External Modules

0.020

0.013

0.038

0.082

0.033

0.080

0.035

0.036

0.023

0.035

0.044

0.016

0.012

0.047

0.013

0.010

NOD OD

AST Depth
0.046

Fig. 2. Impact of each feature of FLAKE16 for both classification problems.
Each box represents a feature and contains its mean absolute SHAP value
(see Section III-E), of which they are in descending order. The left column
contains the values in the context of detecting NOD flaky tests and the right
in the context of detecting OD flaky tests. Features are connected between
each column with a line, representing how significantly the ranks differ.

flaky tests. This is considerably higher than the F1 score
achieved by the best pipeline with the FLAKEFLAGGER fea-
ture set in this paper’s study, which was 0.46. Yet, Alshammari
et al. used an entirely different dataset of tests from projects in
the Java programming language, which makes the comparison
largely invalid. With our Python dataset, we demonstrated that
FLAKE16 improved NOD flaky test detection performance.
There is no evidence to suggest that this would not also be
the case on Alshammari et al.’s dataset. Since this is the first
study to apply machine learning models to detecting OD flaky
tests, there are no previous results to which we can compare.

B. Reliability of Performance Metrics

Extrapolating the curves of Figure 1 suggests that we
would identify more flaky tests of both categories if we had
FLAKE16FRAMEWORK perform more test suite runs. Since
more runs can only result in test case labels transitioning
from non-flaky to flaky, true negatives may become false
negatives and false positives may become true positives. The
effect that this would have on precision, recall, and F1 score
would entirely depend on the frequency of both types of
change. However, we do not consider it likely that more
test suite runs would change the overall conclusion of RQ1
for two reasons. First, any label transitions would affect the

results for the FLAKEFLAGGER feature set the same as they
would for FLAKE16. Second, given the sublinear curves, we
would expect to identify increasingly fewer flaky tests as
FLAKE16FRAMEWORK performed more runs, meaning that
any changes in the F1 scores would be increasingly small.

C. Impact of Features

Our results for RQ3 indicate that maximum threads was the
most impactful feature when detecting NOD flaky tests. This
is unsurprising given the prevalence of flaky tests caused by
asynchronicity and concurrency, as reported in the literature
[18], [31], [38], [50]. Naturally, both of these causes imply
multiple running threads during test case execution. For OD
flaky tests, our results indicate that the number of read- and
write-related system calls were the most impactful. Similarly,
this could be explained by the relationship between filesystem
activity and OD flaky tests that has been described in previous
studies [6], [9], [19], [38], [66]. Interestingly, these two
features were also highly impactful when detecting NOD flaky
tests. A possible explanation for this is that input and output
operations may be performed asynchronously [4], which has
been established as a common cause of NOD flaky tests [38].

Alshammari et al.’s evaluation suggested that execution time
was the most informative feature that they considered for their
FLAKEFLAGGER framework [3]. In our results, execution time
was the fifth most impactful feature when detecting NOD flaky
tests, but was considerably less impactful for OD flaky tests.
They also determined that the three coverage features were
highly informative. Similarly, we found these to occupy the
upper-middle ranks for both classification problems, support-
ing the notion that they are valuable features for detecting flaky
tests. In general, we would expect features such as execution
time, the three coverage features, and maximum memory to be
higher for larger and more complex test cases. We hypothesize
that the impactfulness of this group of features is simply a
consequence of the intuition that the more a test case is doing,
the greater the margin for both error and flakiness.

Many of the static features of FLAKE16, such as cyclomatic
complexity, Halstead volume, and maintainability, appeared to
have the lowest impact for both classification problems. A
recent study cast doubt on the fitness for purpose of Halstead
volume and other code complexity metrics [43]. This could
be the reason why they appeared to be of limited value in
the context of flaky test detection. This is despite another
recent study finding that the Halstead volume of flaky tests
was greater than non-flaky tests to a statically significant
degree, albeit with a small effect size [45]. With this result in
mind, concluding that static features are generally less valuable
than dynamic features could be misguided, especially since
we identified three static features that appeared to make a
considerable contribution to the models’ predictions.

D. Impact of Preprocessing, Balancing, and Model Choice

Table IV does not indicate any clear best choice of pre-
processing or balancing. For both the FLAKEFLAGGER and
FLAKE16 feature sets, pipelines with different preprocessing

and balancing are in the top 10 for both classification problems
with only small differences in F1 score. Most interestingly,
given the significant class imbalances, pipelines with no data
balancing are in the top 10 for both classification problems
with the FLAKEFLAGGER features. In general, these results
indicate that extra trees was the better choice of model, though
this is not definitive since random forest was best for detecting
OD flaky tests with FLAKE16, though in comparison to extra
trees the difference in F1 score is minimal. Overall, the only
reliable conclusions we can draw from these findings is that
data balancing mostly improves detection performance, though
there is no clear best technique, and extra trees appears to
have a slight edge over random forest. When compared to
random forest, extra trees trades increased bias for reduced
variance [20]. Having increased bias means the model may
fail to recognize relationships between feature data and labels,
known as underfitting. Having reduced variance means the
model may be less sensitive to noise and outliers, avoiding
overfitting. It could be that the particular bias-variance trade-
off of extra trees makes it generally more suited to the specific
problem of using machine learning for flaky test detection.

E. Implications

Researchers. This paper shows that using FLAKE16 im-
proved machine learning-based flaky test detection perfor-
mance compared to the FLAKEFLAGGER dataset. This demon-
strates that measuring a greater diversity of test case properties
allows models to better distinguish between flaky and non-
flaky test cases. The results also reveal that machine learning
models are just as applicable to detecting OD flaky tests as
they are to detecting NOD flaky tests. Therefore, researchers
should consider how machine learning models can improve
the scalability of OD flaky test detection, since many previous
techniques incur a significant time cost [19], [32], [66].

Developers. This paper establishes that the maximum num-
ber of concurrently running threads during test case execution
is a very impactful feature when detecting NOD flaky tests. As
such, our advice to developers would be to avoid concurrency
in tests as much as is possible. When developers cannot heed
this advice, it may be useful for them to assume such tests are
likely to be flaky [25]. The same can be said for test cases that
perform significant input and output, given that we found the
number of read- and write- related system calls to be impactful
features for detecting both NOD and OD flaky tests.

VI. RELATED WORK

One of the earliest empirical studies of flaky tests was
performed by Luo et al. [38]. They classified the flaky tests
repaired in 201 commits into 10 cause categories. The most
common cause they identified was related to waiting for
asynchronous calls. For example, a test case that launches a
separate process to do some work and waits for a fixed amount
of time for it to finish may fail when the process happens to
take longer than expected. Another common category was test-
order dependency, the cause of OD flaky tests. Luo et al. found
that this was often characterized by the OD flaky test expecting

a particular value of a global variable which is modified by
another test case, which came to be known in later studies
as a polluter [55]. They also identified OD flaky tests that
were caused by a polluter modifying a file. Subsequent studies
generally support the finding that these three particular causes
are very prevalent in many projects [18], [31], [38], [50].

Lam et al. [32] presented IDFLAKIES, a technique for
detecting flaky tests and labelling them as OD or NOD.
Initially, IDFLAKIES repeatedly executes a test suite in its
original test run order, the default order scheduled by the test
runner, to identify which test cases pass consistently. It then
repeatedly executes the test suite in modified orders. When
a test case that had consistently passed in the original order
fails in a modified order, IDFLAKIES executes the test suite
again in both the original and the modified order, up to and
including the failing test case. Should the test case fail again
in the modified order, but pass in the original order, the tool
labels it as OD, otherwise it is labelled as NOD.

Since IDFLAKIES requires many repeated test executions,
it may not scale well to either large or slow-running test
suites. Bell et al. [7] presented DEFLAKER, which, unlike
IDFLAKIES, cannot identify OD flaky tests. Should a test case
fail, having passed on a previous version of the software under
test and without covering any modified code, DEFLAKER
labels it as flaky. To measure coverage, DEFLAKER requires
instrumentation. Likewise, FLAKE16FRAMEWORK requires
instrumentation to measure coverage and other metrics in
FLAKE16. In both cases, this instrumentation introduces run-
time overhead. However, FLAKE16FRAMEWORK only re-
quires a single instrumented run to detect flaky tests, whereas
DEFLAKER requires instrumentation every time it is used.

One of the earliest techniques for specifically detecting OD
flaky tests was DTDETECTOR, presented by Zhang et al. [66].
Their approach utilizes repeated test suite executions in dif-
ferent orders and, in some configurations, with test case
isolation using separate processes. One configuration of their
technique uses byte-code instrumentation to filter test cases
that are unlikely to be OD flaky tests. The combination of
all these factors meant the time cost of the technique was
significant. Bell et al. [6] presented ELECTRICTEST, which,
unlike DTDETECTOR, involved only a single instrumented test
suite run and was thus significantly faster. The instrumentation
employed by ELECTRICTEST identifies instances where one
test case would modify a location in memory that was accessed
by another test case. However, there is no guarantee that this
would result in a OD flaky test, and so while Bell et al. were
able to demonstrate that the recall of ELECTRICTEST was at
least as good as DTDETECTOR, its precision may be much
poorer. To that end, Gambi et al. [19] presented PRADET,
which uses similar instrumentation to ELECTRICTEST. Unlike
ELECTRICTEST, PRADET verifies suspected OD flaky tests
by executing subsets of the test suite in particular orders.
Naturally, this made it a lot slower than ELECTRICTEST.

The drawbacks of previous techniques, specifically the high
volume of test executions, motivated several studies to evaluate
machine learning models for detecting flaky tests. Bertolino

et al. [8] presented FLAST for predicting if a test case is
flaky based purely on its source code. Their technique uses a
k-nearest neighbor classifier [29] which labels test cases based
on their cosine distance to labelled training instances within
a bag-of-words feature space. The bag-of-words approach is
used to represent test cases as sparse vectors where each
element corresponds to the frequency of a particular identifier
or keyword in its source code. Pinto et al. [44] performed a
similar study but included additional static features beyond
the bag-of-words representation such as the number of lines
of code that make up a test case. This work was subsequently
replicated and expanded by Haben et al. [24]. Alshammari
et al. [3] presented FLAKEFLAGGER, a random forest model
encoding test cases with a feature set containing a mixture
of static and dynamic features that are mostly a subset of
FLAKE16. Their evaluation showed that their feature set
offered a 347% improvement in overall F1 score compared to
Pinto et al.’s purely static feature set at the relatively minimal
cost of the single test suite run, required to collect the dynamic
features. One aspect these three studies have in common is
that they used datasets based on Bell et al.’s evaluation of
DEFLAKER [7]. Recall that DEFLAKER does not detect OD
flaky tests, meaning they would be labelled as non-flaky during
the training and evaluation of the models in these studies.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented FLAKE16, a new feature set that
encodes test cases for machine-learning-based flaky tests de-
tection. It evaluated the performance of 54 machine learning
pipelines when detecting both NOD and OD flaky tests using
both FLAKE16 and a previously established feature set. For
both categories of flaky test, experiments with flaky tests
from 26 real-world Python projects showed greater detection
performance when using FLAKE16. Offering a more complete
evaluation of the problem of flaky test detection, this paper is
the first to apply machine learning models to the detection
of OD flaky tests. Using the SHAP technique to evaluate the
impact that each FLAKE16 feature has on the models’ deci-
sions, the results show that the peak number of concurrently
running threads during test case execution to be the most
impactful for detecting NOD flaky tests. For OD flaky tests,
the number of read- and write-related system calls have the
greatest impact. The experiments also reveal that static code
complexity features such as cyclomatic complexity, Halstead
volume, and maintainability to have little impact in both cases.

As future work, we plan to repeat our experiments with
a much larger dataset of flaky tests, thereby improving the
generalizability of this paper’s findings. We will also include
test cases from projects implemented in different programming
languages. Furthermore, we will evaluate the performance of
machine learning models for detecting flaky tests in additional
specific categories beyond OD flaky tests. By extending our
work in these three areas, we aim to create an automated
technique for detecting a greater variety of flaky test types
that would be applicable to many different types of project.

REFERENCES

[1] H. Abdi and L. J Williams. Principal component analysis. Wiley Inter-
disciplinary Reviews: Computational Statistics, 2(4):433–459, 2010.

[2] R. Al-Qutaish and A. Abran. Halstead Metrics: Analysis of their Design,
pages 145–159. Wiley, 2010.

[3] A. Alshammari, C. Morris, M. Hilton, and J. Bell. FlakeFlagger:
Predicting flakiness without rerunning tests. In Proceedings of the
International Conference on Software Engineering (ICSE), 2021.

[4] Asynchronous I/O https://docs.python.org/3/library/asyncio.html, 2022.
[5] G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard. A study of

the behavior of several methods for balancing machine learning training
data. Explorations Newsletter, 6(1):20–29, 2004.

[6] J. Bell, G. Kaiser, E. Melski, and M. Dattatreya. Efficient dependency
detection for safe Java test acceleration. In Proceedings of the Joint
Meeting of the European Software Engineering Conference and the
Symposium on the Foundations of Software Engineering (ESEC/FSE),
pages 770–781, 2015.

[7] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov.
DeFlaker: Automatically detecting flaky tests. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 433–
444, 2018.

[8] A. Bertolino, E. Cruciani, B. Miranda, and R. Verdecchia. Know your
neighbor: Fast static prediction of test flakiness. IEEE Access, 9:76119–
76134, 2021.

[9] M. Biagiola, A. Stocco, A. Mesbah, F. Ricca, and P. Tonella. Web test
dependency detection. In Proceedings of the Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), pages 154–164, 2019.

[10] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[11] J. Candido, L. Melo, and M. D’Amorim. Test suite parallelization in

open-source projects: A study on its usage and impact. In Proceedings of
the International Conference on Automated Software Engineering (ASE),
pages 153–158, 2017.

[12] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer.
SMOTE: Synthetic minority over-sampling technique. Journal of Ar-
tificial Intelligence Research, 16:321–357, 2002.

[13] Classes, https://docs.python.org/3/tutorial/classes.html, 2022.
[14] Coverage.py documentation, https://coverage.readthedocs.io/en/stable/,

2022.
[15] Docker documentation, https://docs.docker.com/, 2022.
[16] T. Durieux, C. L. Goues, M. Hilton, and R. Abreu. Empirical study

of restarted and flaky builds on Travis CI. In Proceedings of the
International Conference on Mining Software Repositories (MSR), pages
254–264, 2020.

[17] S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, and Misailovic S.
Detecting flaky tests in probabilistic and machine learning applications.
In Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA), pages 211–224, 2020.

[18] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli. Understanding
flaky tests: The developer’s perspective. In Proceedings of the Joint
Meeting of the European Software Engineering Conference and the
Symposium on the Foundations of Software Engineering (ESEC/FSE),
pages 830–840, 2019.

[19] A. Gambi, J. Bell, and A. Zeller. Practical test dependency detection.
In Proceedings of the International Conference on Software Testing,
Verification and Validation (ICST), pages 1–11, 2018.

[20] P Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees.
Machine Learning, 63(1):3–42, 2006.

[21] G. K. Gill and C. F. Kemerer. Cyclomatic complexity density and soft-
ware maintenance productivity. Transactions on Software Engineering,
17(12):1284, 1991.

[22] S. Grafberger, J. Stoyanovich, and S. Schelter. Lightweight inspection of
data preprocessing in native machine learning pipelines. In Proceedings
of the Conference on Innovative Data Systems Research (CIDR), 2021.

[23] M. Gruber, S. Lukasczyk, F. Kroiß, and G. Fraser. An empirical study
of flaky tests in Python. In Proceedings of the International Conference
on Software Testing, Verification and Validation (ICST), 2021.

[24] G. Haben, S. Habchi, M. Papadakis, M. Cordy, and Y. Le Traon. A
replication study on the usability of code vocabulary in predicting flaky
tests. In Proceedings of the International Conference on Mining Software
Repositories (MSR), 2021.

[25] M. Harman and P. O’Hearn. From start-ups to scale-ups: Opportunities
and open problems for static and dynamic program analysis. In

Proceedings of the International Working Conference on Source Code
Analysis and Manipulation (SCAM), pages 1–23, 2018.

[26] G. Hooker and L. Mentch. Please stop permuting features: An explana-
tion and alternatives. ArXiv, 2019.

[27] Imbalanced-Learn documenation, https://imbalanced-learn.org/stable/in
dex.html, 2022.

[28] I/O statistics fields, https://www.kernel.org/doc/Documentation/iostats.t
xt, 2022.

[29] J. M. Keller, M. R. Gray, and J. A. Givens. A fuzzy k-nearest neighbor
algorithm. Transactions on Systems, Man, and Cybernetics, 15(4):580–
585, 1985.

[30] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta.
Root causing flaky tests in a large-scale industrial setting. In Proceed-
ings of the International Symposium on Software Testing and Analysis
(ISSTA), pages 204–215, 2019.

[31] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta. A study on the
lifecycle of flaky tests. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 1471–1482, 2020.

[32] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie. IDFlakies: A framework
for detecting and partially classifying flaky tests. In Proceedings
of the International Conference on Software Testing, Verification and
Validation (ICST), pages 312–322, 2019.

[33] W. Lam, A. Shi, R. Oei, S. Zhang, M. D. Ernst, and T. Xie. Dependent-
test-aware regression testing techniques. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis (ISSTA), pages
298–311, 2020.

[34] W. Lam, S. Winter, A. Astorga, V. Stodden, and D. Marinov. Under-
standing reproducibility and characteristics of flaky tests through test
reruns in Java projects. In Proceedings of the International Conference
on Software Reliability Engineering (ISSRE), pages 403–413, 2020.

[35] J. Listfield. Where do our flaky tests come from?, https://testing.goog
leblog.com/2017/04/where-do-our-flaky-tests-come-from.html, 2022.

[36] V. López, A. Fernández, S. Garcı́a, V. Palade, and F. Herrera. An insight
into classification with imbalanced data: Empirical results and current
trends on using data intrinsic characteristics. Information Sciences,
250:113–141, 2013.

[37] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair,
R. Katz, J. Himmelfarb, N. Bansal, and S. Lee. From local explanations
to global understanding with explainable AI for trees. Nature Machine
Intelligence, 2(1):2522–5839, 2020.

[38] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An empirical analysis
of flaky tests. In Proceedings of the Symposium on the Foundations of
Software Engineering (FSE), pages 643–653, 2014.

[39] M. Machalica, A. Samylkin, M. Porth, and S. Chandra. Predictive test
selection. In Proceedings of the International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP), pages 91–
100, 2019.

[40] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,
and J. Micco. Taming Google-scale continuous testing. In Proceedings
of the International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pages 233–242, 2017.

[41] Open source project criticality score, https://github.com/ossf/criticality
score, 2022.

[42] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn. Surveying the
developer experience of flaky tests. In Proceedings of the International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 2022.

[43] N. Peitek, S. Apel, C. Parnin, A. Brechmann, and J. Siegmund. Program
comprehension and code complexity metrics: An fMRI study. In
International Conference on Software Engineering (ICSE), pages 524–
536, 2021.

[44] G. Pinto, B. Miranda, S. Dissanayake, M. D. Amorim, C. Treude,
A. Bertolino, and M. D’amorim. What is the vocabulary of flaky tests?
In Proceedings of the International Conference on Mining Software
Repositories (MSR), pages 492–502, 2020.

[45] V. Pontillo, F. Palomba, and F. Ferrucci. Toward static test flakiness
prediction: A feasibility study. In Proceedings of the International Work-
shop on Machine Learning Techniques for Software Quality Evoluton,
pages 19–24, 2021.

[46] Preprocessing data https://scikit-learn.org/stable/modules/preprocessing.
html#preprocessing-scaler, 2022.

[47] Psutil documentation, https://psutil.readthedocs.io/en/stable/, 2022.
[48] Radon documentation, https://radon.readthedocs.io/en/stable/index.html,

2022.

[49] Replication package, https://github.com/flake-it/flake16-framework,
2022.

[50] A. Romano, Z. Song, S. Grandhi, W. Yang, and W. Wang. An empirical
analysis of UI-based flaky tests. In Proceedings of the International
Conference on Software Engineering (ICSE), 2021.

[51] S. R. Safavian and D. Landgrebe. A survey of decision tree clas-
sifier methodology. Transactions on Systems, Man, and Cybernetics,
21(3):660–674, 1991.

[52] Saving repositories with stars https://docs.github.com/en/get-started/exp
loring-projects-on-github/saving-repositories-with-stars, 2022.

[53] Scikit-Learn documentation, https://scikit-learn.org/stable/, 2022.
[54] A. Shi, A. Gyori, O. Legunsen, and D. Marinov. Detecting assumptions

on deterministic implementations of non-deterministic specifications.
In Proceedings of the International Conference on Software Testing,
Verification and Validation (ICST), pages 80–90, 2016.

[55] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov. iFixFlakies: A
framework for automatically fixing order-dependent flaky tests. In
Proceedings of the Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), pages 545–555, 2019.

[56] T. Shi and S. Horvath. Unsupervised learning with random forest predic-
tors. Journal of Computational and Graphical Statistics, 15(1):118–138,
2006.

[57] D. Silva, L. Teixeira, and M. D’Amorim. Shake it! Detecting flaky tests
caused by concurrency with Shaker. In Proceedings of the International
Conference on Software Maintenance and Evolution (ICSME), pages
301–311, 2020.

[58] Y. Sun, A. K. C. Wong, and M. S. Kamel. Classification of imbalanced
data: A review. International Journal of Pattern Recognition and
Artificial Intelligence, 23(4):687–719, 2009.

[59] Ivan Tomek. Two modifications of cnn. Transactions on Systems, Man,
and Cybernetics, 6:769–772, 1976.

[60] M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk. An empirical investigation into the nature of test
smells. In Proceedings of the International Conference on Automated
Software Engineering (ASE), pages 4–15, 2016.

[61] A. Vahabzadeh, A. A. Fard, and A. Mesbah. An empirical study of
bugs in test code. In Proceedings of the International Conference on
Software Maintenance and Evolution (ICSME), pages 101–110, 2015.

[62] L. Van Der Maaten, E. Postma, and J. Van den Herik. Dimensionality
reduction: A comparative. Journal of Machine Learning Research,
10(66-71):13, 2009.

[63] Virtual environments and packages, https://docs.python.org/3/tutorial/v
env.html, 2022.

[64] K. D Welker. The software maintainability index revisited. CrossTalk,
14:18–21, 2001.

[65] C. V. G. Zelaya. Towards explaining the effects of data preprocessing
on machine learning. In Proceedings of the International Conference
on Data Engineering (ICDE), pages 2086–2090, 2019.

[66] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D. Ernst, and
D. Notkin. Empirically revisiting the test independence assumption. In
Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA), pages 385–396, 2014.

