
An Empirical Comparison of EvoSuite and
DSpot for Improving Developer-Written Test

Suites with Respect to Mutation Score

Muhammad Firhard Roslan (�), José Miguel Rojas, and Phil McMinn

University of Sheffield, UK
mfroslan2@sheffield.ac.uk

Abstract. Since software faults are usually unknown, researchers and
developers rely on mutation analysis — i.e., seeding artificial defects,
called mutants — to measure the quality of their test suites. One aim of
test amplification techniques is to improve developer-written test cases
so that they kill more mutants and potentially find more real faults.
However, these tools tend to be limited in the types of changes and
improvements they can make to tests, while also receiving little guidance
to tests that kill new mutants. Alternatively, a tool like EvoSuite can
generate tests with the benefit of detailed fitness information and have
the benefit of more flexibility in terms of evolving a test’s structure.
However, the process is typically not based on developer-written tests,
and consequently, the resulting test suites are less likely to be accepted by
human developers. In this paper, we propose modifications to EvoSuite,
in a technique we refer to as EvoSuiteAmp , which starts with developer-
written tests as seeds, and then aims to evolve these tests in the direction
of killing further mutants. We then empirically compare EvoSuiteAmp

with a state-of-the-art test amplification tool, DSpot , on 42 versions of
29 different classes from the Defects4J benchmark, using the original
developer-written test suites for each class as the starting point for test
generation. In total, EvoSuiteAmp achieves a statistically better mutation
score for 35 of these 42 versions when compared to DSpot .

Keywords: Search-Based Test Case Generation · Test Amplification ·
Mutation Analysis · Unit Testing.

1 Introduction

One of the challenges in software testing is deriving tests that are good at re-
vealing faults [?]. But also, writing good tests manually is time-consuming, and
some consider it to be a tedious task [?]. For this reason, there has been a lot
of well-known work in automated test generation techniques, including in the
search-based software engineering community [?].

A widely used automatic test generation tool for Java is EvoSuite [?], which
generates JUnit tests. However, it has some limitations. Fundamentally, it cannot
solve the oracle problem [?] — human testers need to check that the assertions it

generates are correct. Furthermore, the tests it generates do not typically involve
human input, and require post-processing to make them more readable [?].

In contrast, test amplification explicitly aims to strengthen developer-written
tests [?]. The aim is to generate a new version of the developer’s test suite so
that it covers more corner cases and is more effective at finding faults. Since
the “amplified” test suite is based on the developers set of tests, it is likely
more understandable and acceptable to them [?]. The current state-of-the-art
test amplification tool, DSpot [?], utilizes developer-written tests to increase the
number of mutants (artificially seeded defects [?]) that they kill. DSpot “ampli-
fies” developer-written test cases by changing the values of literals in the tests,
method calls, or by adding assertions. Test cases that kill more mutants and
have fewer modifications are retained. However, test amplification tools them-
selves are subject to some limitations. Firstly, the types of changes they can
make to tests are limited and not as flexible as EvoSuite’s evolution process.
Furthermore, unlike search-based tools, they do not utilize fine-grained fitness
information to guide them to new tests. Test cases generated by DSpot that do
not kill new mutants, for example, will be discarded even if the test is actually
“close” to killing a new mutant and could be usefully improved in future.

The aim of this paper is to evaluate a potential “best of both worlds” ap-
proach, in which we evaluate a version of EvoSuite that is capable of reading
developer-written tests as a starting point for test case generation. Leveraging
its ability to make more fundamental changes to the structure of a test case,
it then evolves those tests with the benefit of fine-grained fitness information
for killing new mutants. We then evaluate whether EvoSuite’s evolution and
mutation analysis technique could have a better performance in terms of killing
mutants when compared to DSpot ’s amplification technique. The motivation be-
hind this study is to understand how many more mutants could be killed by test
amplification tools if the principles of test amplification were applied differently,
in the flavor of a more flexible and more guided search-based style of approach.

We compare this modified EvoSuite version, which we refer to as EvoSuiteAmp ,
with DSpot using the developer-written tests in open source projects as the
starting point for test suite generation — specifically, 42 different versions of 29
different Java classes in 7 different projects of Defects4J (v2.0.0) [?]. Our exper-
iments reveal that EvoSuiteAmp outperforms DSpot for 35 of the 42 Java class
versions studied in terms of mutation score achieved. Over 30 repeated runs,
EvoSuiteAmp was further capable of killing more “unique” mutants that DSpot
was not able to kill in any run for 36 of these 42 subjects. EvoSuiteAmp and all
the data collected is available in our replication package [?].

In summary, the contributions of this paper are as follows:

1. A new test improvement strategy that utilizes the flexibility of EvoSuite,
EvoSuiteAmp , that evolves test cases and leverages fitness information for
killing specific mutants (Section 3).

2. An empirical study with seven open-source projects comparing EvoSuiteAmp

with an existing state-of-the-art test amplification tool, DSpot (Section 4).
3. Results and analysis of the effectiveness of both tools in terms of mutation

score and mutants uniquely killed by each tool (Section 5).

2 Background

Mutation Analysis. Mutation Analysis is a way to evaluate the quality of a
test suite [?]. The idea is to make small artificial changes, known as mutants,
that mimic the mistakes that programmers could make in a program. Mutation
Analysis tools generate mutants by applying a set of rules, known as mutation
operators, to the program. The program that contains the mutants is executed
against the test suite, to assess the quality of the tests in it. If the result of run-
ning the mutated program is different from the original program, the mutant is
considered killed, and if it is the same, the mutant is considered alive — indicat-
ing that the test suite needs some change/improvement to kill it. The proportion
of mutants that are killed as a percentage of all the mutants seeded is known as
the test suite’s mutation score. A test suite that achieves a higher mutation score
is generally considered better at detecting faults than one with a lower score [?].

Test Amplification. Unit test suites are usually written by developers man-
ually. This is a common practice as developers who wrote the program have
domain knowledge about the program [?]. A study by Grano et al. [?] shows
that tests that have been written by a developer tend to be more readable than
those automatically generated by a tool. However, the biggest challenge is to
create a good test suite that can detect faults [?]. Test amplification, a tech-
nique that improves a test suite by utilizing the existing developer-written tests
could improve a variety of goals, such as improving code coverage and mutation
score [?]. The main distinction between test amplification and general automated
test generation tools is that test amplifiers use existing developer-written tests
as a starting point, that they aim to improve/“amplify”.

Two main parts of the process of test amplification are input amplification
and assertion amplification. Input amplification involves forming new test cases
by changing values, literals, objects, or method calls in some original, developer-
written test case. Assertion amplification involves adding new assertion state-
ments to the test that verify the expected output of the amplified inputs. After
amplifying the inputs and assertions, a test amplification tool will derive several
new test cases from the developer-written tests. A test selector then selects the
test cases that kill new mutants with the fewest modifications from the original
developer-written tests they were based on.

DSpot [?] is a well-known test amplification tool that amplifies developer-
written tests. It takes, as input, the developer-written tests and the class that will
be tested. The amplifiers used in input amplification of DSpot are the changing
of literal values and method calls (by duplicating calls, removing them, or adding
new invocations). After the tool amplifies the inputs, it further changes a test
case by adding new assertions. Finally, to select which test cases are to be kept,
DSpot measures the test cases based on the criteria that are used by the test
selector it is configured with. The default test selector of DSpot uses the PITest
mutation analysis tool [?] (a configuration of DSpot we refer to as DSpotMut),
which keeps test cases that kill mutants not killed by the original test suite,
and the number of changes from the original test case (with smaller changes
preferred over bigger ones). Another test selector option available on DSpot uses

the JaCoCo1 coverage test selector (that we refer to as DSpotCov), which keeps
test cases that increase code coverage and execute unique paths.

Search-Based Test Generation. EvoSuite is an automatic test generation for
Java that uses genetic algorithms to generate a test suite [?] that has been evalu-
ated on many open-source projects in terms of code coverage and detecting faults
[?]. The default configuration of EvoSuite can produce a JUnit test suite that
maximizes the code coverage for each class. However, it can also be configured
to use a fitness function that aims to maximize the generated test suite’s muta-
tion score [?]. The fitness function that guides test generation towards strongly
killing mutants is formulated using three different distance metrics. Firstly, it
calculates the distance of the calling function on the test case if it does not con-
tain the function of the mutated statement. Secondly, it calculates the distance
to executing the mutant using the approach level and branch distance Finally, it
calculates the mutation impact, where the mutants need to infect the state and
could propagate to an observable state.

EvoSuite typically starts by generating a random initial population of tests
that calls the class methods. However, this population can bee seeded using a
technique called carving [?] that harvests sequences of statements from the test
cases of an existing test suite. Assuming that developers have written some tests,
EvoSuite can take those tests and execute them to collect all potential reusable
objects. The objects will then be inserted as part of a newly created test case
(initialization). However, there are two limitations of this technique. It needs
the developer-written tests to be converted into a representation that could be
used in the EvoSuite search algorithm, and all the assertions from the developer-
written tests will be removed. This means that it does not preserve exactly the
same format that is being written by a developer.

3 Modifications made to EvoSuite — EvoSuiteAmp

EvoSuite was originally designed to generate a test suite from scratch. In this
study, we need EvoSuite to read developer-written tests, remove mutants that
are killed by developer-written tests, and not to add new random test cases
during the search. With this in mind, we made four different modifications to
EvoSuite, which we refer to as EvoSuiteAmp , and are as follows:

1. Removing Killed Mutants by the Developer-Written Tests. We set
the fitness criteria of EvoSuiteAmp to both branch coverage and strong mutation
testing. Before starting the evolution, we remove the goals that were met by the
developer-written tests. This is to make sure that the search focuses on the goals
that are not covered yet. As an example, the class under test will have mutant
A,X ,Y , and Z . If the developer-written test could kill mutant X ,Y , and Z ,
the only criteria that it needs to meet is to kill mutant A only.
2. Seeding Developer-Written Tests into the Initial Population of the
GA. The second modification we made is on the initial population of the test

1 Available at: https://www.eclemma.org/jacoco/.

cases. The default behavior of EvoSuite is to randomly generate new test cases.
Instead of randomly generating new test cases, we used the developer-written
tests as the initial population of the search. This utilizes the developer’s domain
knowledge of the program. The initial population size on the EvoSuite is set
to 50 individuals, but in our study, we changed the population size depending
on the developer-written test suite size. This is all done by using the carving
technique that has been implemented in EvoSuite [?], introduced in Section 2.

3. Tuning the Add New Random Test Case Rate to Zero. We tune
the settings of the parameter values of the evolutionary algorithm responsi-
ble for generating the test suite. The default configuration of EvoSuite is to
use crossover, mutation, and randomly add new test cases into the population.
However, we change the rate of adding new random test cases to the popula-
tion of test cases to zero. This change means that the developer-written tests
are kept during evolution, without the addition of completely new, randomly
generated tests. This is crucial for maintaining similarity of the generated tests
to the original test suite, and keeping the test suite free of tests or part of tests
that are completely new or alien to the original developer. We still allow mod-
ifications to inputs featuring in the tests, however, so that there is scope for
improving the original tests to kill more mutants, and for tests to be recombined
by the crossover operator. After a few generations, the fitness of all individual
chromosomes improves, where it will stop if it meets all the criteria or if the
search budget is exhausted. A study by Aniche et al. shows that developers tend
to copy and paste from previous test methods and modify their name, inputs,
and assertions [?]. This effect is simulated, in part, by crossover, with mutation
focussed on modifying the developer-written test inputs only.

4. Turning Off Test Suite Minimization. We turned off the EvoSuite test
suite post-process minimization feature in order to maintain the developer-
written tests, else they may be discarded following test suite evolution.

4 Empirical Study

This section details the experiment design of the empirical study we conducted
to assess EvoSuiteAmp , DSpotMut , and DSpotCov with respect to killing mutants.
We also include DSpotCov into the experiment because the EvoSuiteAmp fitness
criteria includes branch coverage. In the following, we refer to EvoSuiteAmp and
DSpot as distinct “tools”, while we breakdown the analysis of DSpot in terms of
the two configurations DSpotMut and DSpotCov (Section 2 for more information).
We designed our empirical study to answer the following four research questions:

RQ1: Which tool (EvoSuiteAmp or DSpot) kills the most mutants?

RQ2: Which tool kills the most “unique” mutants (mutants not killed by the
alternative tool)?

RQ3: Which tool kills the most mutants with the smallest test suites?

Table 1. Subject programs used in this study

Subject Acronym Lines of Code Avg. # of
Mutants

of
Unique
Classes

Evaluated

of
Versions

Evaluated

Min Max Avg.

Commons-Cli Cli 56 200 104 261 2 3
Commons-Codec Cdc 162 355 242 253 3 4
Commons-Compress Crs 92 370 205 182 5 5
Commons-Csv Csv 105 1152 675 117 3 9
Jsoup Jsp 85 280 193 48 5 7
Commons-Lang Lng 52 1366 907 568 3 5
Commons-Math Mth 148 1091 469 662 8 9

Total 29 42

RQ4: Which tool provides the most consistent results when re-run multiple
times?

Subjects.We performed our experiment on the widely used benchmarkDefects4J
(v2.0.0) [?], which contains 835 reproducible real faults on 17 open-source projects.
Although we are not specifically interested in the individual bugs provided by
this benchmark, it provides us with an ideal set of subject classes and utilities
with which we can evaluate the performance of both the EvoSuiteAmp and DSpot
tools. This includes an interface for test generation, which among other things
help with removing flaky tests — tests that pass and fail without any changes to
code [?]. It also incorporates the Major [?] mutation analysis tool, which we use
as independent arbiter of the mutants killed by the test suites generated by both
EvoSuiteAmp and DSpot tools (since DSpot relies on PITest [?], while EvoSuite
uses its own in-built mutation analysis).

We selected subject classes from Defects4J with which to perform our exper-
iment based on the following rules:

1. The project includes developer-written tests;

2. DSpotMut , DSpotCov , and EvoSuiteAmp were capable of using the provided
original developer-written tests,

3. Major [?], PITest [?], and EvoSuite could generate mutants for the project.

After running every faulty version of each project in the Defects4J dataset, 42
faulty versions of 29 unique classes in 7 libraries met the requirements above. Ta-
ble 1 shows the details of these subjects. We found a large number of Defects4J ’s
classes/versions to be unusable for our study due to an issue with DSpot ’s in-
terface with its mutation analysis tool PITest needed for the study, and prob-
lems compiling the class under test. We have contacted the owner of the DSpot
project, and it could not be resolved to date. Despite this, our final subject set
comprises a wide and diverse set of classes over a number of projects that are
suitable for our study.

DSpotMut &
DSpotCov

EvoSuiteAmp
Developer-

Written Tests

Mutants

Remove failing
tests

Test Suite
Regression Test

Suite Run Tests

MAJOR

Mutants Remove mutants
that is killed by
the Developer-
Written Tests

Defects4j

Checkout a
version

Fig. 1. Overview of the experimental setup. We amplified the test suite using
EvoSuiteAmp , DSpotMut , and DSpotCov .

4.1 Experimental Procedure

Figure 1 shows the overview of our experiment. The tools are fed with developer-
written tests that were gathered from the test files in every project version (with
a particular fault) from Defects4J . For each version, as shown in Table 2, we
improved each class of the study’s original developer-written test suite (as pro-
vided by Defects4J) using EvoSuiteAmp (using EvoSuite v1.2.0), and DSpotMut

and DSpotCov (using v3.2.0 of DSpot). We ran all experiments on the same
workstation, with 32GB RAM and Intel i5 CPU @ 3.10GHz, running Ubuntu
20.04.4 LTS. For both tools, we set the search budget time limit to 120 seconds,
a commonly used value for test suite generation, and one that is applied in the
search-based testing tool competition [?].

To take into account the non-deterministic nature of the tools, we repeat test
suite generation 30 times for each tool/configuration studied. While we did not
perform any internal modifications to DSpot— the build was downloaded from
their repository2 and configured to form DSpotMut and DSpotCov . We made the
modifications to EvoSuite to form EvoSuiteAmp detailed in Section 3.

To make sure that there will not be any failing (flaky) tests generated by
either tool, we used the fix test suite feature of Defects4J that removes failing
tests from the test suite until all of them pass. Without removing the failing tests,
flaky tests could interfere with the mutation score result. For all the developer-
written and generated regression test suites, we used the Major mutation testing
tool [?] to compute the mutation score. Major includes a summary of which
mutants are killed by each test suite. The summary helps in finding the additional
number of mutants that the generated test suites kill. We calculate the relative
increase of mutation score for each automatically improved test suite, over the
original developer-written version as:

%IncreaseKilled =
AverageMutantsKilledAmplified

TotalNumberOfMutants
× 100

2 Available at: https://github.com/STAMP-project/dspot.

Generated Test Suites. EvoSuiteAmp and DSpot generate the test cases in
a single test file. There are some cases where it has dependencies from other
test files that developers wrote, such as a utility class. Without importing de-
pendencies in EvoSuiteAmp and DSpot , the improved test suite files will have
compilation errors. For this reason, we made sure the improved test suite files
always imported these test suite dependencies.

Handling of Mutation Analysis in the Experiment. In this experiment,
we used strong mutation testing to evaluate the amplified tests. There were, in
effect, three different mutation testing tools involved in the study. EvoSuite uses
its own mutation analysis tool, while DSpot uses the PITest mutation analysis
tool as part of its test amplification process. Since both EvoSuite and DSpot use
different mutation analysis tools, it is not fair to compare the number of mutants
it kills with different tools, which could produce different results for the same
test suite. To avoid any bias in our study, we used a third mutation analysis
tool, in the form of Major [?] to perform mutation analysis after both EvoSuite
and DSpot generate the improved test suite. Since Major is Defects4J ’s default
mutation analysis tool, it was straightforward for us to apply this analysis.

Statistical Analysis. Since we are assessing algorithms that are making ran-
dom choices, we analyzed the data that we collected using well-established sta-
tistical analysis recommendations [?]. We repeated each experiment 30 times.
We then used the Mann-Whitney U-test to check for the significant differences
regarding the number of mutants killed, comparing EvoSuiteAmp with DSpotMut

improved test suites, and then EvoSuiteAmp with DSpotCov test suites, for each
version of each subject class. We used the 99% confidence interval, which means
that if the p-value is less than 0.01, our result is statistically significant. We
further calculate effect sizes, using Vargha-Delaney’s (Â) test. Again, we com-
pared EvoSuiteAmp with DSpotMut , and then EvoSuiteAmp with DSpotCov . An

Â value that is over 0.5 indicates that EvoSuiteAmp outperforms DSpot . Another
statistical analysis that we performed was finding the correlation between the
size of the test suite, and the mutation score. We used Spearman’s rank correla-
tion coefficient to find the relationship between the two variables. We used 99%
confidence interval to indicate if the result is statistically significant.

4.2 Threats to Validity

Naturally, there are threats to validity associated with our study. The first is
associated with subject selection. We chose to use versions of classes that are
part of the Defects4J benchmark, yet not all of the classes it provides could
be used in our study, due to problems in getting DSpot to work. However, we
were able to use 42 versions of 29 unique classes in 7 projects, which still pro-
vides a suitable number and diversity of subjects with which to carry out our
experiments and draw conclusions from the results. Another threat is related to
how mutation score is calculated, since EvoSuite and DSpot use different mecha-
nisms. EvoSuite provides its own implementation of a mutation analysis pipeline,
while DSpot uses PITest . To control this threat, we used a third tool, Major , to

provide an unbiased assessment across the results of the two tools. To control
the threats related to the non-deterministic behavior of both tools, we repeated
our experiments 30 times. To mitigate the threats associated with our statistical
analysis, and assumptions about the normality of the statistical distributions
of our results, we used non-parametric statistical tests. Finally, after generating
the test cases using both EvoSuiteAmp and DSpot , there are some cases where
it needs other test files to run, due to dependencies. This could have an impact
when calculating the mutation score. To mitigate this problem, we ensured all
improved test suites retained access to any dependent libraries and code.

5 Results

Answer to RQ1: Mutation Score. Table 2, part B, shows the mean of the
mutants killed by EvoSuiteAmp , DSpotMut , and DSpotCov . The table further
shows that EvoSuiteAmp is more effective at killing mutants for 35 out of the
42 versions (83.3%) than DSpotMut . It is also better at killing mutants for 27
out of the 42 (64.3%) versions compared to DSpotCov . EvoSuiteAmp is most
effective at killing mutants with classes from the Math project. All the class
versions that EvoSuiteAmp achieves a better mutation score have a p-value less
than 0.01. Where DSpotCov and DSpotMut achieve a better mutation score than
EvoSuiteAmp , the p-value is less than 0.01. When using the Â statistic to measure
effect size, we found that EvoSuiteAmp has a score that favours it over DSpotMut

in 35 out of the 42 projects and DSpotCov in 25 out of 42 versions (59.5%), each
time with an Â value greater than 0.8 (i.e., a large effect size).

Conclusion for RQ1. EvoSuiteAmp performs better than DSpotMut and
DSpotCov in terms of killing mutants.

Answer to RQ2: Unique Mutants.We also evaluated the cumulative number
of uniquely killed mutants after executing each of the 30 test suites on every
tool. This means that mutants that are still alive after 30 runs are considered
as either stubborn mutants or equivalent mutants. We found that EvoSuiteAmp

killed more unique mutants in 36 out of the 42 versions (85.7%) when compared
to DSpotMut , and 27 out of the 42 versions (64.3%) when compared to DSpotCov .
This and more detailed information regarding the performance of each tool on
each class version can be seen in part D of Table 2.

Conclusion for RQ2. EvoSuiteAmp kills more unique mutants after 30 runs
when compared to DSpotMut and DSpotCov .

Answer to RQ3: Size of Test Suite. Even though EvoSuiteAmp can kill more
mutants, it generates bigger test suites in general. When comparing DSpotMut to
EvoSuiteAmp , 39 out of the 42 class versions studied involved an improved test
suite that is smaller number of lines of code (KLOC) when DSpotMut was used,
and when comparing DSpotCov to EvoSuiteAmp , 26 out of the 42 class versions

Table 2. The result of test amplification on 42 versions after 30 runs for EvoSuiteAmp

(Evo), DSpotMut (DS), and DSpotCov (DJ).

(A) (B) (C) (D) (E) (F) (G)

F
a
u
lt

V
e
rs
io
n

of Killed Mutants S
ta

n
d
a
rd

D
e
v
ia
ti
o
n

#
o
f
U
n
iq
u
e

M
u
ta

n
ts

K
il
le
d

O
ri
g
in
a
l
T
S

M
u
ta

ti
o
n

S
c
o
re

%

In
c
re

a
se

K
il
le
d

%

#
o
f
K
L
O
C

Mean Median Mean
Evo DS DJ Evo DS DJ Evo DS DJ Evo DS DJ Evo DS DJ Evo DS DJ

Cdc-11 †18.2 16.5 20.0 †18.0 16.0 20.0 ◦1.2 1.2 0.0 20 20 20 63.9 †21.9 19.9 24.1 ∗0.2 0.1 0.3

Cdc-16 †◦90.5 2.0 7.0 †◦90.5 2.0 7.0 †◦23.3 1.0 0.0 †◦139.0 3 7 50.6 †◦9.9 0.2 0.8 ∗•0.7 <0.1 0.1

Cdc-17 †◦7.3 1.0 2.0 †◦7.5 1.0 2.0 †◦1.4 0.0 0.0 †◦9.0 1 2 43.5 †◦31.6 4.3 8.7 ∗•0.3 0.2 0.2

Cdc-18 †◦6.9 1.5 2.0 †◦7.0 2.0 2.0 †◦1.5 0.5 0.0 †◦9.0 2 2 43.5 †◦30.0 6.7 8.7 ∗•0.3 0.2 0.3

Cli-37 †◦13.7 1.0 1.0 †◦13.0 1.0 1.0 †◦4.3 0.0 0.0 †◦23.0 1 1 76.5 †◦3.7 0.3 0.3 ∗•1.4 <0.1 <0.1

Cli-38 †◦10.8 2.0 2.0 †◦11.0 2.0 2.0 †◦2.4 0.0 0.0 †◦15.0 2 2 76.1 †◦2.9 0.5 0.5 ∗•1.5 <0.1 <0.1
Cli-39 1.0 2.0 2.0 1.0 2.0 2.0 0.0 0.0 0.0 1 2 2 14.3 7.1 14.3 14.3 ∗•0.2 <0.1 0.2

Crs-34 †◦39.0 35.0 35.0 †◦40.0 35.0 35.0 †◦3.0 0.0 0.0 †◦44.0 35 35 48.2 †◦34.8 31.2 31.2 ∗•0.4 0.2 0.2

Crs-39 †◦57.5 36.0 36.0 †◦58.5 36.0 36.0 †◦4.0 0.0 0.0 †◦62.0 36 36 32.1 †◦51.3 32.1 32.1 ∗•0.8 <0.1 <0.1

Crs-40 †9.0 4.4 17.0 †9.0 4.0 17.0 ◦2.1 3.1 0.0 †15.0 12 17 37.2 †0.9 0.5 1.8 ∗•0.2 <0.1 <0.1

Crs-44 12.1 15.3 17.0 12.5 14.0 17.0 †◦3.1 1.5 0.0 †◦18.0 17 17 0.0 52.6 66.5 73.9 ∗•0.2 <0.1 <0.1

Crs-45 †◦108.4 56.3 63.0 †◦110.0 57.0 63.0 †◦14.6 1.3 0.0 †◦132.0 57 63 54.2 †◦18.7 9.7 10.9 ∗•0.8 0.2 0.2

Csv-01 †◦6.7 2.1 3.0 †◦6.5 3.0 3.0 †◦2.9 1.1 0.0 †◦16.0 3 3 41.7 †◦8.0 2.5 3.6 ∗0.3 <0.1 0.5

Csv-02 †◦9.6 2.0 7.0 †◦12.0 2.0 7.0 †◦3.3 0.0 0.0 †◦12.0 2 7 36.8 †◦50.5 10.5 36.8 ∗•0.3 0.1 0.1

Csv-04 †16.8 14.8 27.0 †17.0 15.0 27.0 †◦1.4 1.0 0.0 †20.0 18 27 40.0 †24.0 21.2 38.6 ∗0.3 0.3 0.9

Csv-06 †◦12.2 8.4 9.0 †◦12.0 8.0 9.0 †◦0.6 0.5 0.0 †◦13.0 9 9 35.0 †◦61.2 41.8 45.0 ∗•0.4 0.2 0.2

Csv-07 †14.7 12.9 23.0 †14.0 12.0 23.0 †◦2.3 1.5 0.0 †19.0 16 23 47.1 †21.0 18.4 32.9 ∗0.3 0.2 1.0
Csv-10 16.2 56.0 108.0 14.5 54.5 108.0 ◦6.3 10.3 0.2 33 75 109 28.2 5.7 19.7 38.0 ∗•0.6 0.2 0.5

Csv-11 †18.1 13.4 31.0 †18.0 13.0 31.0 ◦2.0 2.1 0.0 †23.0 18 31 42.0 †22.3 16.5 38.3 ∗0.3 0.2 1.0

Csv-12 †31.7 0.0 108.0 †33.0 0.0 108.0 †◦3.4 0.0 0.0 †36.0 0 108 50.3 †10.1 0.0 34.6 ∗•2.1 0.1 1.0

Csv-16 †22.4 12.2 46.0 †22.5 8.0 46.0 ◦4.3 7.4 0.0 †31.0 26 46 36.8 †19.6 10.7 40.4 ∗0.8 0.3 1.3

Jsp-58 9.7 20.1 29.0 8.0 19.0 29.0 †◦4.4 2.2 0.0 23 25 29 22.5 13.7 28.4 40.8 ∗0.1 <0.1 0.2

Jsp-69 †14.3 2.0 24.0 †15.0 2.0 24.0 †◦2.8 0.0 0.0 †18.0 2 24 2.6 †37.6 5.3 63.2 ∗0.2 0.1 0.4

Jsp-79 †◦2.3 0.0 0.0 †◦2.0 0.0 0.0 †◦0.5 0.0 0.0 †◦4.0 0 0 53.8 †◦9.0 0.0 0.0 ∗0.2 0.2 0.3

Jsp-80 36.6 46.0 49.0 35.0 46.0 49.0 †◦4.4 2.2 0.0 45 49 49 11.1 45.1 56.8 60.5 ∗•0.3 <0.1 0.2

Jsp-84 16.0 26.0 27.0 16.0 26.0 27.0 †◦2.2 0.0 0.0 20 26 27 0.0 38.2 61.9 64.3 ∗•0.2 0.1 0.1

Jsp-86 †◦6.9 1.5 0.0 †◦7.0 1.5 0.0 †◦2.1 1.5 0.0 †◦12.0 3 0 51.4 †◦19.6 4.3 0.0 ∗0.2 <0.1 0.2

Jsp-93 †15.7 4.0 18.0 †16.0 4.0 18.0 †◦2.6 0.0 0.0 †◦19.0 4 18 2.5 †39.2 10.0 45.0 ∗0.3 0.2 0.4

Lng-03 †517.8 484.2 545.0 †517.5 485.0 545.0 †◦12.2 8.9 0.0 †543.0 499 545 0.4 †58.2 54.5 61.3 ∗•2.2 1.2 1.6

Lng-04 ◦0.8 1.0 0.0 ◦1.0 1.0 0.0 †◦0.5 0.0 0.0 †◦2.0 1 0 82.9 ◦2.0 2.4 0.0 ∗•0.3 <0.1 <0.1

Lng-05 †◦104.0 5.0 8.0 †◦104.0 5.0 8.0 †◦3.1 0.0 0.0 †◦112.0 5 8 0.0 †◦73.8 3.5 5.7 ∗•0.4 0.2 0.2

Lng-07 †◦530.8 406.0 492.0 †◦530.5 407.5 492.0 ◦11.0 13.3 0.0 †◦554.0 449 492 0.4 †◦59.3 45.4 55.0 ∗•2.4 1.0 1.5

Lng-16 †◦520.7 416.2 490.0 †◦520.0 415.0 490.0 ◦10.9 12.8 0.0 †◦545.0 445 490 0.5 †◦59.6 47.7 56.1 ∗•2.3 1.1 1.5

Mth-09 †◦26.2 20.0 20.0 †◦26.0 20.0 20.0 †◦3.4 0.0 0.0 †◦32.0 20 20 51.6 †◦28.8 22.0 22.0 0.4 0.9 1.7

Mth-25 †◦112.9 41.9 82.0 †74.5 32.0 82.0 †◦72.3 13.2 0.0 †◦233.0 59 82 0.0 †◦32.2 12.0 23.4 ∗•0.3 <0.1 0.1

Mth-26 †◦157.0 51.4 65.0 †◦157.0 51.0 65.0 †◦4.2 0.7 0.0 †◦168.0 53 65 45.6 †◦33.3 10.9 13.8 ∗1.0 0.8 1.2

Mth-27 †◦152.1 51.2 65.0 †◦152.0 51.0 65.0 †◦3.4 0.6 0.2 †◦157.0 53 65 46.0 †◦32.6 11.0 13.9 ∗1.1 0.8 1.1

Mth-36 †◦85.6 54.0 71.0 †◦86.0 54.0 71.0 †◦10.7 0.0 0.0 †◦101.0 54 71 48.4 †◦23.3 14.7 19.3 1.5 2.2 2.8

Mth-52 †◦1509.6 181.0 187.0 †◦1497.0 181.0 187.0 †◦244.0 0.0 0.0 †◦1869.0 181 187 6.0 †◦55.1 6.6 6.8 ∗•1.1 0.2 0.5

Mth-53 †244.1 88.3 307.0 †255.5 82.5 307.0 †◦60.0 24.2 0.0 †◦311.0 142 307 26.5 †46.5 16.8 58.5 1.4 3.1 13.1

Mth-55 †◦536.2 266.0 266.0 †◦542.0 266.0 266.0 †◦24.3 0.0 0.0 †◦567.0 266 266 19.0 †◦68.5 34.0 34.0 ∗•1.5 0.8 1.0

Mth-56 †◦89.8 45.0 47.0 †◦90.0 45.0 47.0 †◦9.5 0.0 0.0 †◦111.0 45 47 0.0 †◦57.2 28.7 29.9 ∗•0.5 <0.1 <0.1

† EvoSuiteAmp performs significantly better than DSpotMut (p-value < 0.01)
◦ EvoSuiteAmp performs significantly better than DSpotCov (p-value < 0.01)

∗ EvoSuiteAmp generates more KLOC than DSpotMut
• EvoSuiteAmp generates more KLOC than DSpotCov

Table 3. Spearman correlation value (ρ) between test suite size (LOC) and mutation
score.

Tool p-value Correlation (ρ)

EvoSuiteAmp <0.01 0.698
DSpotMut <0.01 0.588
DSpotCov <0.01 0.608

had smaller test suites with DSpotCov . Furthermore, when comparing DSpotMut

to EvoSuiteAmp , the improved test suites for 27 out of 42 class versions (64.3%)
had a better ratio of killing mutants per line of code with DSpotMut , and similarly
26 out of 42 versions (61.9%) were better with DSpotCov than EvoSuiteAmp . In
all seven versions in which DSpotMut has a better mutation score, it improves
test suites with a smaller KLOC compared to EvoSuiteAmp . As an example,
Cli-39 as shown in Table 2 part G, EvoSuiteAmp generates 0.2 KLOC to kill
one mutant, while DSpotMut generates 0.1 KLOC to kill two mutants. When
comparing EvoSuiteAmp to DSpotCov , where DSpotCov has a better mutation
score, 8 out of 15 class versions (53.3%) have a lower number of LOC. As an
example, for Cdc-11, EvoSuiteAmp generates 0.2 KLOC while killing around
18 mutants and DSpotCov generates 0.3 KLOC, while killing 20 mutants. On
the contrary, Jsp-84, EvoSuiteAmp generates 0.2 KLOC while killing around six
mutants, and DSpotCov generates 0.1 KLOC, while killing 27 mutants.

In order to verify whether there is a correlation between the generated test
suite KLOC size and the increase of mutation score, we used the Spearman
rank correlation measure. Table 3 presents the correlation coefficients of each
tool. There is a strong correlation (ρ) between the EvoSuiteAmp size of the test,
and the increase in mutation score. In both DSpotMut and DSpotCov , there is
a moderate (ρ >0.4) correlation between the size and increase of the mutation
score, and high correlation (ρ >0.7) for EvoSuiteAmp . All the tools’ p-values are
less than 0.01, which shows that there is statistical significance.

Conclusion for RQ3. EvoSuiteAmp generates a larger final test suite when
compared to DSpotMut and DSpotCov .

Answer to RQ4: Consistency. In order to investigate the non-determinism
rate on each tool, we calculated the mean, median, and standard deviation (σ)
of the mutation score for all 42 subject class versions over each of the respective
30 re-runs. Table 2 (parts B and C) shows the result of the calculations. The
mutation score EvoSuiteAmp produces has a greater standard deviation when
compared to DSpotMut and DSpotCov . There were only 7 out of the 42 versions
(16.6%) for which the DSpotMut produced a higher standard deviation, while
there was zero for DSpotCov .

Conclusion for RQ4. EvoSuiteAmp tends to show more varied behavior
when compared to DSpotMut and DSpotCov .

5.1 Discussion

We now discuss some of the ramifications of our results, along with further
observations made during the course of the experiments.

Mutation Score. The EvoSuiteAmp tool, in general, kills more mutants than
DSpot , which shows that using the distance to mutation fitness function that is
provided in EvoSuite can kill mutants that DSpot finds hard to kill. In the case
of amplifying developer-written tests using DSpotCov , it is not surprising that an
increase in code coverage also helped to increase the mutation score, as mutants
that are not reached by developer-written tests could not be detected. Overall,
the results show that EvoSuite’s evolution and mutation analysis technique is
much more suited to improving test suites to kill mutants than DSpot .

Unique Mutants. Furthermore, EvoSuiteAmp finds and kills more unique mu-
tants after 30 runs when compared to DSpotMut and DSpotCov . This shows that
EvoSuite explores more parts of the program than DSpot within the 30 runs and
that it could find more unique mutants, further adding to our finding that it is
better at improving test suites to kill mutants than DSpot .

Test Suite Size. In answering RQ3, we found that EvoSuiteAmp usually creates
a bigger test suite when compared to the two configurations of DSpot , and that
there is a high correlation between killing mutants and a big test suite. However,
by looking at the mutants killed per number of lines of code, the value is not
significantly bigger. We set EvoSuiteAmp to not run the minimization technique
that the default EvoSuite does (see Section 3), to avoid original developer-written
tests being discarded — however, enabling this technique could reduce the lines
of code while maintaining the mutation score. We leave this experiment as an
item for future work.

Consistency of Results. Finally, RQ4 shows that bothDSpotMut andDSpotCov

give more consistent results over the 30 runs with each subject class version.
This potentially means, however, that EvoSuiteAmp has a higher chance of ex-
ploring more edge cases due the higher degree of stochasticity that it evolves the
developer-written tests, and thereby could find more unique mutants, as shown
by the answer to RQ2.

Readability of Final Tests. Anecdotally, we noted that the tests produced
by EvoSuiteAmp were less readable than DSpot ’s. Some of this was due to the
inevitable disruption caused by the evolutionary operators (although we delib-
erately turned some of these off for this reason — see Section 4.1). In particular,
the carving procedure adapts developer-written tests to EvoSuite’s internal test
case representation, which causes them to lose some of their original qualities.
This is something that needs to be investigated in future work.

6 Related Work

There have been many works that have sought to generate tests based on existing
tests, for example to speed up the process of test generation [?], or as seeds as
the initial population of a search-based technique [?,?].

Test amplification is a research area that comprises techniques designed to
improve a developer-written set of test cases in some aspect. One of these as-
pects is the test suite’s coverage and mutation score [?]. There have also been
techniques that attempt to improve new tests generated by the amplification
process, for example with respect to their readability [?] and potential redun-
dancy [?]. Popular test amplification tools include DSpot for Java [?], studied in
this paper, and AmPyfier for Python [?]. Test Cube is a developer-centric test
amplification tool for Java [?] that operates as a plugin for the IntelliJ integrated
development environment, and builds on the techniques of DSpot .

However, none of these works directly compare test amplification tools with
techniques capable of fine-grained fitness information to guide the test case
search towards strongly killing mutants — functionality that is available in
EvoSuite.

Elswhere, Olsthoorn et al. [?] applied model seeding that could contribute
improving mutation score while maintaining readability of the test cases. There
have been some studies on how to amplify tests made by Google [?] and Facebook
[?], which asked the professional developer to generate new tests manually that
help in increasing mutation score. The two studies are different to ours, however,
as they focus on trying to amplify the tests manually, whereas in the study of
this paper, we focus on trying to automate this process.

7 Conclusions and Future Work

Test amplification tools aim to improve developer-written tests, but are limited in
the changes they can make and are not guided by fine-grained fitness information.
Search-based test case generation tools like EvoSuite, on the other hand, can
benefit from the guidance provided by fitness functions, and have a lot more
control over the structure of tests, but are limited in terms of their re-use of
developer tests and the final readability of the tests they generate.

In this paper, we formulated a version of EvoSuite, EvoSuiteAmp , that uses
its carving functionality to start the search on the basis of developer-written test
code, and evolves the tests towards killing mutants. When evaluating it against
the state-of-the-art Java test amplification tool DSpot , EvoSuiteAmp was better
at killing more mutants and killing more unique mutants that DSpot was found
to never kill in any of the 30 re-runs of our experiments.

In essence, our paper shows that it is possible for automated tools to kill more
mutants when starting from developer-written tests, so long as they are given
more flexibility in terms of modifying those tests, as well as adequate guidance.
However, the downside is less readability of the final tests, since they are further
away from the original ones provided by developers. This suggests two possible
alternative avenues for future work. Firstly, test amplification tools like DSpot
could be improved with finer-grained fitness information, and modified to not
throw away tests that are improved with respect to fitness goals — with the
intention of further improving them so that they eventually kill more mutants;
and/or secondly, tools like EvoSuite should be adapted, so they are better at

utilizing developer-written tests as a starting point for the search, with the added
capability of retaining the characteristics of the original tests, where possible.
In particular, work needs to be done in improving EvoSuite data structure for
encoding tests, so that it can better accommodate the wide variety of styles in
which JUnit test cases are written.

