
Search-Based Propagation of Regression Faults in Automated Regression Testing

Sina Shamshiri∗, Gordon Fraser∗, Phil McMinn∗, Alessandro Orso†
∗Dept. of Computer Science, University of Sheffield, UK
{sina.shamshiri, gordon.fraser, p.mcminn}@sheffield.ac.uk

†Georgia Institute of Technology, US
orso@cc.gatech.edu

Abstract—Over the lifetime of software programs, developers
make changes by adding, removing, enhancing functionality
or by refactoring code. These changes can sometimes result
in undesired side effects in the original functionality of the
software, better known as regression faults. To detect these,
developers either have to rely on an existing set of test cases,
or have to create new tests that exercise the changes. However,
simply executing the changed code does not guarantee that a
regression fault manifests in a state change, or that this state
change propagates to an observable output where it could be
detected by a test case. To address this propagation aspect, we
present EVOSUITER, an extension of the EVOSUITE unit test
generation tool. Our approach generates tests that propagate
regression faults to an observable difference using a search-
based approach, and captures this observable difference with
test assertions. We illustrate on an example program that
EVOSUITER can be effective in revealing regression errors
in cases where alternative approaches may fail, and motivate
further research in this direction.

Keywords-regression testing; search based software engineer-
ing; automated regression testing; search based testing

I. INTRODUCTION

Throughout the lifetime of a software program, it evolves
and undergoes numerous changes, as the developers may
intend to add, enhance, or refactor functionality. These
modifications to the code can result in unintentional bugs
commonly known as regression faults. In order to increase
the confidence of developers over such modifications, re-
gression testing is used to check that the main functionality
is still intact and any change in the software behaviour is
intentional. A common assumption is that developers have a
set of test cases prepared before making modifications to
software, and they re-run the tests after making changes
to the code. Any test failing informs the developers of a
regression fault.

However, creating such test suites is known to be expen-
sive and time-consuming, and the quality of the existing
test suite will be the main determinant of the success of
regression testing. In practice, developers create test suites
that only partially cover the structure of the program. Even
assuming there is a high coverage test suite, this cannot
guarantee that regression faults will be detected.

To address these issues, many attempts have been made to
generate regression tests automatically. Although it is well
understood how to generate test cases that reach and exercise

changed code, the task of making the tests propagate any
state change induced by a regression fault to an observable
output is still an open issue. In particular, current approaches
to achieving propagation attempt to exhaustively calculate
execution paths and therefore suffer from scalability is-
sues [1] and have to restrict the depth of the exploration.

In this paper, we propose an approach named EVOSUITER
as an extension of EVOSUITE automatic test suite genera-
tor [2] in order to create a regression test suite. EVOSUITER
tries to find regression faults between two versions of a Java
class, using a search-based approach, aiming to direct the
regression faults to propagating the output. Our approach
optimises towards better test suites by guiding the search to
reach maximum behavioural differences.

The main contribution of this paper is our approach in
finding regression faults via a search-based technique that
seeks to propagate and detect regression faults by:

1) Reaching maximum code coverage by optimising test
cases towards better coverage in both versions of the
class.

2) Maximising state differences between the two versions
of the given class in order to propagate state infections
to observable differences.

3) Maximising control-flow differences between the two
versions to propagate regression faults.

Additionally, a case study is presented with a non-trivial
example, in which our approach successfully propagates the
regression fault.

II. BACKGROUND AND MOTIVATING EXAMPLE

In order to detect a regression fault in a program [3], a
test should be able to first, reach and execute fault. Secondly,
the execution should result in a change and therefore infect
the state of the program. Finally, it should propagate to an
observable difference in the output.

To discuss how different approaches in regression testing
tackle these three aspects, we present a simple, but non-
trivial, motivating example. To construct such an example,
a case was considered that a method has to be called for a
number of times for the regression fault to be propagated to
the output. The class CreditCard, as shown in Figure 1,
considers a scenario in which the credit card company
allows a customer to withdraw as long as their minimum



1 public class CreditCard {
2

3 private int minRepayment = 0;
4 private int balance = 0;
5

6 public boolean withdraw(int amount) {
7 if(canWithdraw() == false)
8 return false;
9

10 minRepayment+= 5 * 2 ;
11 balance += amount;
12 return true;
13 }
14

15 public boolean canWithdraw() {
16 return (minRepayment <= 200);
17 }
18 }

Figure 1. In the CreditCard class, the highlighted change will
not immediately affect the program behaviour. However, after 21 calls
to withdraw(), canWithdraw() would return false, resulting in a
regression fault.

repayment reaches a certain amount. The minimum payment
is calculated as a fixed amount that increases based on the
number of withdrawals. Over time, the credit card company
decides to double the minimum repayment rate, however
the developers forget to suitably raise the withdrawal limit.
While the program is changed, a regression fault will not
show up unless withdraw() is called between 20 and 40
times.

Early work on regression testing only used existing test
suites in order to find regression faults. As it may be expen-
sive to run a complete test suite after making any change
to the software, Elbaum et al. [4] proposed prioritising parts
of the test suite that can achieve coverage more quickly.
Similarly, Harrold et al. [5] proposed test suite minimisation
that selected a subset of the set suite that would provide the
same level of coverage. Since such approaches relied solely
on existing test suites, success would only be by chance and
depended on the quality of the tests. Another aspect of the
example (Figure 1) is the fact that, if the developers already
have a test suite with 100% structural coverage, this still
would not guarantee that the regression would be detected.

Test suite augmentation is another aspect in regression
testing that has drawn the interest of many researchers. Xu
and Rothermel [6] introduced DTSA, which was able to
add new test cases to the existing test suite for the modified
parts of the program, to create a coverage-adequete test suite.
Teneja et al. [7] generated regression tests using dynamic
symbolic execution while employing techniques such as
pruning the unchanged paths to further optimize their search
strategy. These approaches aimed to solved the reachability
aspect while leaving propagation to chance.

Other approaches in the area looked at using external or
randomly generated test suites in order to find regression
faults. Orso and Xie [8] presented BERT as a behavioural

regression testing tool, that operated in three stages. The
first stage used either a set of test cases randomly generated
by third-party tools (e.g. [9], [10]) or an existing test suite.
Secondly, it executed the tests over both the old and new
versions of the class under the test while capturing their
outcome, and finally analysed the observed behavioural
difference and presented the result back to the user. A similar
approach taken by Taneja and Xie [11] attempted to add new
branches to the code, that if covered by a random testing
tool would expose a regression fault. The resulting tool
DiffGen synthesised a test driver, that would try to execute
the branches on both versions. While regression testing with
randomly generated test suites was found to be useful, the
quality of the test is still determined by the existing or
generated tests, and reaching any of the three elements is by
chance. With the CreditCard example, these approaches
can only succeed if the provided test suites can identify a
behavioural difference.

The previous approaches did not however focus on ad-
dressing the propagation of regression faults. Santelices et
al. [12] used symbolic execution of the different versions
of the program, to augment the existing test suite with
new test cases that would consider the change-propagation
paths. More recently, Santelices and Harrold [1] proposed an
approach for propagation-based testing of changes. These
approaches have scalability limitations, as the number of
possible execution paths exponentially grow and therefore a
boundary has to be defined.

While previous attempts made in regression testing were
found to be effective, they mostly have shortcomings such
as a) relying on third-party test generation tools while not
handling fault propagation, as execution of a regression
fault may not propagate to a change in the behaviour [8]
[11], b) relying solely on existing test suites and therefore
leaving reachability, infection and propagation to chance
[8] [4] [5], c) augmenting test suites while aiming to only
achieve coverage [6] [7], and d) in cases that consider
propagation, they either have scalability limitations due to
high computation costs, or do not consider a sequence of
method calls that may lead to reaching a fault [12] [1].

III. PROPAGATING REGRESSION FAULTS WITH
SEARCH-BASED TESTING

EVOSUITER attempts to solve the previous shortcomings
by using a search-based approach in finding regression
faults. The main objective is to generate test cases that can
propagate to different states between the versions of the
program under test. To achieve this, EVOSUITER performs
the following steps.

A. Overview

EVOSUITER is an extension of the EVOSUITE platform
[2] and therefore relies on evolutionary algorithms. Using a
genetic algorithm [13], an initial population of random test



suites is first created. Over time individuals are randomly
mutated and reproduced; these operations depend on the
underlying representation. The probability of an individual
for being selected for reproduction depends on its fitness
value, which estimates the distance towards an optimal
solution. Therefore the best test suite always has the best
fitness value compared to its ancestors [2].

B. Representation

Individuals in the population are represented by regres-
sion chromosomes, which extend the chromosomes used by
EVOSUITE [2] such that execution of a test case leads to
two traces for the two versions of a tested class. Details on
the mutation and crossover operators can be found in [2].
The traces serve as input for the fitness function.

C. Fitness Function

Since the direction of the evolution of the generated test
suites depends on the fitness function, the fitness value
is the key towards reaching better test suites. Three main
measurements were considered as our fitness guidance. At
first, it is important that the test suites are able to execute
and cover the code under the test, therefore focusing on
reachability. Thereafter, aiming to direct regression faults
to propagate to an observable difference, first the state of
the program after the execution of each statement has to
be observed and compared to find execution differences.
Secondly, the fitness should guide the search to cause
diversions at branches, therefore creating a change in the
control-flow.

The overall fitness value is calculated by combining the
value of the following measurements:

1) Structural Coverage: Before being able to propagate
the regression faults to an observable behavioural difference,
it is important to reach and execute the faulty code, so
as to solve the reachability aspect of regression testing.
Furthermore, as every part of the class may potentially
contribute towards propagation, we aim to cover all the code.
Therefore, one of the measures for assessing the fitness of
the test suite is the level of coverage it has over the class
and its branches. To measure this value, based on the stored
execution traces the value of the branch coverage fitness
function [2] is calculated for both versions and added.

2) Object Distance: It is expected that while executing
a regression fault, if the two versions of the software
are generating different values (either internally inside the
objects or externally as observable return values), increasing
state difference between two versions of a software would
raise the chance of the fault to propagate to an observable
output (i.e., the public API of the class). Therefore, another
measure used in calculating the fitness is the observable
difference based on the stored execution traces. In order
to calculate this value, initially the execution traces are

analysed, and the objects resulted from the execution of
each statement in the test suite are recursively inspected to
create a set of comparable primitive data values. To capture
the values for non-primitive data types, the Java Reflection
Framework is used to access the values inside objects in
a recursive manner, regardless of their access modifiers.
Finally, the observed execution values are compared between
the two versions and a fitness value is returned based on
the calculated numerical object distance [14] between the
two versions. The maximum calculated distance will be
normalised and added to the total distance. The inverse
of the total distance is finally added to the main fitness value.

3) Control-flow Distance: In order to further assist the
regression fault to propagate, we identified another mea-
surement to better guide the search. Generally during the
execution, if a test case results in a diversion at a particular
branch between the versions, it raises the chance of the
regression fault to propagate to the output, due to the
change in the control flow. As each part of the control
flow may contribute towards propagation, we aim to cause a
diversion in the control flow at as many branches as possible,
and we thus implemented a control-flow distance measure
for each branch of the code. This measurement decreases
as the branches get closer to diversion. To achieve this
measurement, first similar branches between the classes get
mapped together using JDiff [15]. Afterwards, the control-
flow distance value is calculated at branch level. For each
method call executed on a test suite, the branch state
is observed in both versions of the code. The function
distance calculates the distance of a branch to becoming
true or false – also known as branch distance [13] – for
both versions and compares them. Additionally, the actual
branch distance value is normalised between 0 and 1 denoted
as ω, such that 0 ≤ ω(bi) ≤ 1. If a diversion is observed
at a branch between the two versions, the minimum fitness
value 0 is returned. Otherwise, the fitness function for a
test suite with method calls C = {c1, . . . , cn} and branches
B = {b1, . . . , bm} is calculated as follows:

cfgDis(B) =
m∑
i=1

(minm
j=1(1− distance(cj , bi) + ω(bi)))

The fitness is expected to decrease until a diversion is
observed, for which the best fitness value 0 is returned.
Finally, the sum of the minimum distance values for each
branch among all method executions will be normalised and
added to the total fitness.

D. Finalising and Assertions

After the search finishes, EVOSUITER will pick the test
suite with the best fitness value and will analyse the test
suite on both versions for one last time. At this stage, the
test statements will be executed on both versions of the class
under test, and if the test can reveal a difference between the



two versions, EVOSUITER adds assertions to the test. This
enables the developer to see that a behavioural difference
exists, and to fix the code until it passes.

IV. CASE STUDY

For an initial assessment of the competency of our ap-
proach, we used the BankAccount [8], [16] example
and our approach succeeded in identifying the different
behaviour. Being successful in propagating the regression
faults in such basic examples, we used the motivating
example from Section II as a case study. Additionally, in
order to test the effectiveness of our propagation strategy,
we have experimented our approach without the propagation
fitness measures (i.e., just with branch coverage). The results
of the experiments show that, our approach was not only
effective in finding the regression, but it also outperformed
a search-based regression testing with coverage as the only
fitness measure.

In order to restrict the duration of the search, we used
a time limit as the search budget. Considering that an
evolutionary algorithm is used for searching, the number
of generations created may affect the chance of generating
better test suites that can identify the regression faults.
Therefore, to evaluate the performance of our approach, we
used the three time budgets of short, medium and long with
durations of respectively 3, 5 and 10 minutes. To compare
with alternative approaches where setting time limits was not
allowed, the number of randomly generated test cases has
been modified to respectively 200, 500 and 2000, to achieve
the same duration. In order to ensure that the generated result
of the software has not been by chance, each method-budget
pair has been tested for at least 30 times.

Table I lists the methods used to test the CreditCard
class versions, with their success rate in finding the re-
gression fault respective to the used search budget. Based
on the results, running EVOSUITER with a higher search
budget results in higher success rate, meaning that the given
guidance is effective in finding regression faults.

Additionally, it can be seen that with respect to the
increase in search budget, the success rate of search-based
testing with coverage as the only measurement did not
significantly increase. This is while the combined fitness
values were able to reach a higher success rate due to having
a better guidance. In comparison to the existing regression
testing approach BERT, even with very large number of test
cases, remains unable to find the regression fault due to the
nature of random testing.

Table I
SUCCESS RATE IN FINDING THE REGRESSION

Method Short Medium Long

EVOSUITER 66% 75% 90%
EVOSUITER WITH COVERAGE ONLY 3% 12% 13%
BERT WITH RANDOOP 0% 0% 0%

V. CONCLUSION AND FUTURE WORK

In this paper, we presented EVOSUITER, as a new ap-
proach to automated regression testing and test suite gener-
ation. EVOSUITER uses search-based techniques to optimise
towards test suites that are able to find regression faults in
the program. Our approach not only generates test suites,
but also aims to solve the propagation aspect of regression
testing.

Our initial experiments provide initial, encouraging evi-
dence that our approach succeeds in propagation. As a next
step, we will experiment with different ways of combining
the fitness measurements introduced in this paper. The fitness
function discussed in this paper addresses the reachabil-
ity and propagation aspects of regression testing. We will
investigate how to extend this by addressing also state
infection, for example using dynamic symbolic execution.
Furthermore, a large empirical study has to be conducted to
examine the effectiveness of our approach in practice.

REFERENCES

[1] R. Santelices and M. Harrold, “Applying aggressive propagation-
based strategies for testing changes,” in Proc. ICST, 2011, pp. 11–20.

[2] G. Fraser and A. Arcuri, “Evolutionary generation of whole test
suites,” in Proc. QSIC. IEEE, 2011, pp. 31–40.

[3] J. Voas, “Pie: A dynamic failure-based technique,” Software Engi-
neering, IEEE Transactions on, vol. 18, no. 8, pp. 102–112, 1992.

[4] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing test
cases for regression testing,” SIGSOFT Softw. Eng. Notes, vol. 25,
no. 5, 2000.

[5] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology for con-
trolling the size of a test suite,” ACM Trans. Softw. Eng. Methodol.,
vol. 2, no. 3, pp. 270–285, 1993.

[6] Z. Xu and G. Rothermel, “Directed test suite augmentation,” in Proc.
APSEC, 2009, pp. 406 –413.

[7] K. Taneja, T. Xie, N. Tillmann, and J. de Halleux, “express: guided
path exploration for efficient regression test generation,” in Proc.
ISSTA. ACM, 2011, pp. 1–11.

[8] A. Orso and T. Xie, “Bert: Behavioral regression testing,” in Proc.
WODA. ACM, 2008, pp. 36–42.

[9] Agitar, “JUnit Factory URL: http://www.agitar.com/developers/junit
factory.html,” 2013, Last visited on 14.01.2013.

[10] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random
testing for Java,” in Proc. OOPSLA, 2007, pp. 815–816.

[11] K. Taneja and T. Xie, “Diffgen: Automated regression unit-test
generation,” in Proc. ASE. IEEE, 2008, pp. 407–410.

[12] R. Santelices, P. Chittimalli, T. Apiwattanapong, A. Orso, and
M. Harrold, “Test-suite augmentation for evolving software,” in Proc.
ASE. IEEE, 2008, pp. 218–227.

[13] P. McMinn, “Search-based software test data generation: a survey,”
Software Testing, Verification and Reliability, vol. 14, no. 2, pp. 105–
156, 2004.

[14] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “Object distance and its
application to adaptive random testing of object-oriented programs,”
in Proc. Workshop on Random testing. ACM, 2006, pp. 55–63.

[15] T. Apiwattanapong, A. Orso, and M. Harrold, “Jdiff: A differencing
technique and tool for object-oriented programs,” Automated Software
Engineering, vol. 14, no. 1, pp. 3–36, 2007.

[16] W. Jin, A. Orso, and T. Xie, “Automated behavioral regression
testing,” in Proc. ICST. IEEE, 2010, pp. 137–146.


