
Automatic Detection of Potential Layout Faults
Following Changes to Responsive Web Pages

Thomas A. Walsh∗, Phil McMinn∗ and Gregory M. Kapfhammer†
∗Department of Computer Science, University of Sheffield, UK
†Department of Computer Science, Allegheny College, USA

∗{p.mcminn, twalsh1}@sheffield.ac.uk †gkapfham@allegheny.edu

Abstract—Due to the exponential increase in the number of
mobile devices being used to access the World Wide Web, it is
crucial that web sites are functional and user-friendly across a
wide range of web-enabled devices. This necessity has resulted
in the introduction of responsive web design (RWD), which uses
complex cascading style sheets (CSS) to fluidly modify a web site’s
appearance depending on the viewport width of the device in use.
Although existing tools may support the testing of responsive web
sites, they are time consuming and error-prone to use because they
require manual screenshot inspection at specified viewport widths.
Addressing these concerns, this paper presents a method that
can automatically detect potential layout faults in responsively
designed web sites. To experimentally evaluate this approach, we
implemented it as a tool, called REDECHECK, and applied it
to 5 real-world web sites that vary in both their approach to
responsive design and their complexity. The experiments reveal
that REDECHECK finds 91% of the inserted layout faults.

I. INTRODUCTION
When the number of different types of mobile device

accessing the Internet were few in number, web developers
could create and maintain different versions of a web site
intended for optimal viewing on a particular mobile device or
a larger laptop or desktop screen. Yet, the recent explosion in
the number of mobile devices – OpenSignal reports 18,796
unique devices running Android in the year 2014 [1] – renders
this approach to testing infeasible because there are too many
devices and associated viewport widths to consider. Since more
than 1 in 4 Google searches now originate from a mobile
device [2] and 67% of respondents in a recent Google Research
survey said they were more likely to make a purchase from
a web site if it was “mobile friendly” [3], developers and testers
must account for the vast variety of mobile viewport widths.

Responsive web design (RWD) is a recent approach for
tackling the proliferation of viewport widths that allows
developers to make a single site that is intended to be used
and viewed easily across a range of devices, from those with
small screen sizes (i.e., mobile devices) to those with larger
resolutions usually found on laptop and desktop computers [4].
The key idea behind RWD is that, instead of designing and
maintaining separate versions of the web site for particular
devices or a set of fixed resolutions [5], the developer creates a
scheme to lay out a web page’s elements differently depending
on the user’s particular viewport width. This scheme is referred
to as the page’s “responsive design”. Using “fluid grids” and
“flexible images”, RWD principles insist that a web site should
capably accommodate all possible viewport resolutions [4].

Using media queries, a feature of modern cascading style
sheets (CSS) and the hypertext markup language (HTML), a
responsively designed web site will detect the current viewport
width and adjust element sizes and alignment for it, thus making
the best use of the space available and ensuring that a user can
easily interact with the page and read its content [4]. This is not

the case when a page designed for a desktop is “shrunk” down
to fit a smaller screen – something that mobile devices tend to
do in the absence of a responsively designed site. While some
may argue that RWD only impacts the aesthetics or layout
of a web site, it is important to note that it is precisely the
presence of these characteristics that increases a site’s perceived
usability [6] and the loyalty that users feel about it [7].

Even though RWD leads to mobile-friendly sites, recent
experiments with web developers suggest that programming
HTML and CSS is error-prone and difficult [8]. Additionally,
68,289 questions on the StackOverflow web site have been
tagged with labels related to responsive web design [9],
suggesting that real-world web developers and testers often
struggle with the practice of responsive web design. While
existing tools (e.g., WRAITH [10] and RESPONSIVEPX [11])
support some aspects of testing responsively designed web
sites, they are time consuming for testers to use because they
require manual page inspection at specific viewport widths.

Reacting to the importance of creating responsively designed
sites and the challenge of implementing pages that are free
of errors in layout, this paper presents a method that models
the nuances of a responsive web site and automatically detects
changes in it that result from CSS modifications. Implemented
as a tool called “REDECHECK” (REsponsive DEsign CHECKer,
pronounced “Ready Check”), the presented approach reports
potential layout faults in responsively designed web sites.

Using 5 web sites that adhere to RWD principles, were
functional as of May 2015, and contained between 937 and
8,711 lines of CSS code, we experimentally evaluated the
effectiveness of REDECHECK. The experiments demonstrate
that our method can automatically find 91% of the inserted
faults, while not erroneously reporting faults that do not exist.
In summary, the key contributions of this paper are:
1) Implemented as a tool called REDECHECK, a method for

automatically detecting layout faults in responsive sites;
2) Using real-world web sites, an initial empirical study

demonstrating the benefits of the presented method.

II. BACKGROUND
A. Responsive Web Design

Illustrating some of the complexities inherent in the task
of testing a responsive web site, Figure 1a shows a wireframe
example of a responsive page at three viewport resolutions
similar to those used by a smartphone, tablet, and a desktop
computer. The page involves five menu items, implemented
with five li HTML elements, denoted li[1] to li[5]; and
six content panels, implemented with six div HTML elements,
denoted div[1] to div[6]. At the smallest viewport width
of 400 pixels, the menu items are hidden and only displayed
when the user clicks a button in the top-right corner of the
page, while the main content panels are stacked in a single
column, requiring the user to scroll down the page to access

div[1]

div[2]

div[3]

li[1] li[2] li[3] li[4] li[5]

div[1] div[2]

div[3] div[4]

li[1] li[2] li[3] li[4] li[5]

div[1] div[2] div[3]

div[4] div[5] div[6]

(a-i) 400 pixels wide (a-ii) 800 pixels wide (a-iii) 1200 pixels wide

(a) Original version of a web page

@media(min-width: 768px) {
/* original rule */
li {

width: 140px;
}

/* modified rule */
li {

width: 150px;
}

}

li[1] li[2] li[3] li[4]

li[5]

div[1] div[2]

div[3] div[4]

li[1] li[2] li[3] li[4] li[5]

div[1] div[2] div[3]

div[4] div[5] div[6]

(b-i) CSS code (b-ii) Modified version at 800 pixels wide (b-iii) Modified version at 1200 pixels wide

(b) Modified version of a web page showing the result of a layout fault

Figure 1. A simple responsive web page shown at three different resolutions. (a) The original version of the web page, with li elements making up a list of
menu items and div elements making up content panels. (b) The result of a change to the CSS code (b-i) that increases the width of the menu items, and is
intended to only influence the 1200 pixel viewport width (b-iii). However, the modification unintentionally causes a layout issue at the 800 pixel viewport width
(b-ii) such that the menu items are now too wide to fit on one line and the last element incorrectly wraps to the next line.

all of the content. As the viewport widens to 800 pixels, the
dropdown button disappears and the menu items are laid out
in a single row in the header at the top of the web page, with
the content panels rearranged in the main body of the page
into a two abreast layout. As the viewport widens further to
1200 pixels the content panels again switch, this time to a three
column layout, thus making optimal use of the space available.

Responsive web sites are developed using a combination
of HTML and CSS that ultimately creates the document object
model (DOM) representing a web site’s structure. Using CSS
rules, HTML elements can be set to dynamically proportion
themselves according to the available space, thus being arranged
in containers whose dimensions are fixed by the size of the
current viewport. For instance, the following CSS rule ensures
that two HTML div elements will horizontally take up half
of a web page and, in addition, appear side by side:

div { width: 50%;}

Here, the div element is instructed to take up 50% of the
width of its container, thereby adjusting to an exact width in
pixels that depends on the dimensions of the device or web
browser window in which the page is being viewed.

Additionally, special CSS rules, known as CSS3 media
queries [4], can be used to switch on a specific set of CSS
rules depending on the viewing device’s constraints. In the
following code example, an HTML button element should
only appear at viewport widths below 500 pixels. The button
activates a menu that displays a series of navigation links. At
larger page widths, such as those on a desktop, there is enough
space to always show all these links in a navigation bar, and
as such a special button for activating them is not needed.
@media(max-width: 499px) {
button { display: block; }

}

@media(min-width: 500px) {
button { display: none; }

}

In this code segment, the 500 pixel viewport width is an
instance of a breakpoint. In the context of responsive web
design, a breakpoint is some threshold at which different CSS
rules are switched on or off so that a page can be optimally
laid out according to the specifics of the particular device being
used to view it – in this example, the width of the screen.

B. Layout Faults
Creating a responsive design is a challenging process, since

the style sheet must be carefully constructed such that, for
different viewing constraints, the right set of CSS rules are
switched on and work correctly for the right HTML elements,
while other HTML elements correctly adjust in size. While
many developers choose to work with a framework, such as
Bootstrap [12] or Foundation [13], that provides CSS rules for
an initial set of reusable and common layouts, these layouts
only represent starting points and thus require customization to
ensure a unique, yet cohesive, look and feel for the web site.

Figure 1b demonstrates how small changes to the CSS can
result in undesirable effects not intended by the developer and
often manifested at different viewport widths. We refer to such
mistakes as layout faults. Suppose the developer is working
with the web page design at a viewport width of 1200 pixels.
Seeing the extra width available to the menu item elements, she
widens them from 140 pixels to 150 pixels. The CSS change is
shown by part b-i of the figure, with the change in appearance
of the page at 1200 pixels wide shown by part b-iii. Since her
current viewport is set to 1200 pixels wide, she assumes that
the tweak had the intended effect and, in addition, introduced
no inadvertent layout faults to the web page.

Yet, unless she explicitly checks the page (e.g., by manually
adjusting the browser’s width), she will be unaware of the
impact the change has had at other viewport sizes. At a width of

800 pixels, shown in part b-ii, the menu items are now too wide
to fit on one line, with the last element wrapping onto a second.
As this issue continues to go unnoticed and more changes
are made to the site, the developer may struggle to recall the
initial CSS modification that caused the problem, thus requiring
more effort to diagnose and fix it. This example underscores
the challenge of tweaking a responsive design: each time a
change is made, all resolutions need to be manually rechecked
for unintentional side-effects. This is a time-consuming and
error-prone process – in viewing a large number of resolutions
and layouts, developers and testers can easily miss faults that
ultimately make their way into the live web site.

The previous example shows how a developer is expected
to engineer a web page layout that is aesthetically pleasing and
easy to use across a range of different screen sizes, managing:
1. Visibility of HTML elements, since not all elements need
to be shown at all viewport widths (e.g., the button shown in
the top right of the 400 pixel view given in Figure 1a-i).
2. Varying width of HTML elements, since elements change
width when the viewport width changes (e.g., the body panels
div[1]–div[6] are 100% of their container’s width when
the viewport is 400 pixels wide, but then take up a smaller
percentage of the width when viewed at larger viewports).
3. Changing relative alignment of HTML elements across
different viewport sizes (e.g., the content panels div[1]–
div[6] are stacked at the 400 pixel width view, but then
fluidly realign alongside one another at larger screen widths,
where they can comfortably fit in such a configuration).

Maintaining all of these aspects at once can be a challenging
task. Yet, while the height of an HTML element may also fluidly
change, this is usually a result of the browser automatically
re-arranging the contained content in response to a change in
viewport width. As such, the developer tends not to explicitly
control this aspect of the layout through CSS. Unlike its width,
the overall height of a web page is not generally fixed, under the
reasonable expectation that the user will scroll to access content
that does not fit into the height of the viewport. This assumption
has led to the emergence of single-page, vertical-scrolling web
sites recently becoming a mainstream trend [14].

As far as the authors are aware, there has been no previous
work addressing the problem of automatically detecting layout
faults following changes to responsive web pages. While various
tools have been developed to allow developers to view their
web site at the resolutions common to different devices, the
viewport sizes tend to be fixed. As such, layout faults between
the different resolutions presented may be missed. Regardless
of whether or not a tester can pick a bespoke viewport, these
tools require much manual effort and are thus error-prone.

III. OUR APPROACH: THE RESPONSIVE LAYOUT GRAPH
Our approach models the layout of a responsive web page

across a series of viewport widths, explicitly taking account of
the key aspects of responsive layout detailed in Section II-B,
namely the changing visibility, width, and relative alignment of
web page elements. We refer to our model as the Responsive
Layout Graph (RLG), as it builds upon concepts associated
with the alignment graph that was proposed and developed
by Choudhary et al. [15]. A change to a responsive web page
causes a change to its RLG, which may either be a legitimate
tweak to the page’s design, or the indication of a layout fault
needing to be brought to the attention of the developer.

A. Definitions and Example
Given a set of web page elements ERLG for a web page W,

we define three types of constraint (one for each trait of RWD
layout) which together form a Responsive Layout Graph:

Definition 1 (Visibility Constraint): A visibility constraint
vc, for some web page element e ∈ ERLG, is a pair (x1,x2)
that represents a range of viewport widths, inclusive of x1 and
x2, for which e is present in the DOM of a web page.

Definition 2 (Width Constraint): A width constraint wc,
for some page element e ∈ ERLG, is a 4-tuple (x1,x2,m, c),
that describes how the width we of the element e (measured in
pixels) varies in relation to the width wp of its direct container
(i.e., its parent), using the values m and c derived from the
line that fits the element’s widths between x1 and x2 pixels
according to the linear equation we = (m

100 × wp) + c.
The final definition draws on concepts from the alignment

graph defined by Choudhary et al. [15], in particular the notion
of relationship types between web page elements, drawn from
the set T = {pc, s}. A parent-child relationship, denoted by the
element pc, exists between a web page element and the element
that directly contains it (i.e., its parent). Meanwhile, a sibling
relationship, denoted by the element s, exists between any pair
of elements that share the same parent. These relationships are
described with a set of alignment attributes, a subset of Q =
{L,R,A,B, . . .}, which characterize the relative alignment
of the elements in the layout of the page. L,R,A, and B,
for instance, represent an element being “left of”, “right of”,
“above”, and “below” its sibling, respectively (we refer the
reader to reference [15] for the full definition of Q and a
discussion of all the different alignment attribute types).

Definition 3 (Alignment Constraint): For a pair of web
page elements e1 ∈ ERLG and e2 ∈ ERLG, an alignment
constraint ac is a 4-tuple (x1,x2, t,P), where t ∈ T denotes
a parent-child or sibling relationship type and P ∈ 2Q is a set
of relative alignment attributes, both of which hold for e1 and
e2 between the viewport widths of x1 and x2 pixels.

Note that, in all of these definitions, x1 represents the lower
bound of the constraint, so the condition x1 ≤ x2 holds.

For a web page W it is possible to derive the respective
sets of visibility, width, and alignment constraints V C, WC,
and AC, which, along with the set of elements ERLG, form
an RLG. An example RLG over the range of viewport widths
for the web page of Figure 1a is shown in Figure 2. Each web
page element e ∈ ERLG corresponds to a node in the graph,
with the node name displayed in bold face and visibility and
width constraints shown above and below, respectively. Directed
edges in the graph form relationships between HTML elements,
labeled with alignment constraints. The variables wmin and
wmax denote the minimum and maximum viewport widths that
an RLG considers in the generation process. Many web page
elements can be seen over all viewport widths, and so have the
visibility constraint (wmin,wmax). One exception is the button
element, which is only visible between wmin and 767 pixels.
This RLG also shows examples of varying width constraints:
for instance, the elements div[1]–div[6] have the width
constraints (wmin, 767, 100, 0) and (768,wmax, 0, 300). That
is, they fill 100% of the parent’s width when the viewport is
767 pixels or less wide, appearing at a fixed width of 300 pixels
when the viewport is 768 pixels or wider. These elements also
exhibit changing alignments over these two ranges, appearing
above one another when the viewport width is below 768 pixels
wide and otherwise tiled across their containing main element.

(wmin,wmax)
body

100% of viewport

(wmin,wmax)
main

(wmin,wmax, 100, 0)

(768,wmax)
ul

(768,wmax, 100, 0)

(wmin, 767)
button

(wmin, 767, 0, 40)

(wmin,wmax)
div[1]

(wmin, 767, 100, 0)
(768,wmax, 0, 300)

(wmin,wmax)
div[2]

(wmin, 767, 100, 0)
(768,wmax, 0, 300)

(wmin,wmax)
div[3]

(wmin, 767, 100, 0)
(768,wmax, 0, 300)

(768,wmax)
li[1]

(768,wmax, 0, 140)

(768,wmax)
li[2]

(768,wmax, 0, 140)

(768,wmax)
li[3]

(768,wmax, 0, 140)

(wmin,wmax,
s, {B})

(wmin, 767, s, {A})
(768,wmax, s, {L})

(wmin, 767, s, {A})
(768, 991, s, {A,R})
(992,wmax, s, {L})

(768,wmax, s, {L})

(768,wmax, s, {L})

Figure 2. A fragment of the RLG for the web page of Figure 1a over a range
of viewport widths between wmin and wmax. (For space reasons, we have
omitted certain nodes, and all alignment constraints on parent-child edges.)

Formally, an RLG is defined by a 5-tuple RLG =
(ERLG,RRLG,FV C ,FWC ,FAC), where ERLG is the com-
plete set of web page elements that are displayed for at
least one viewport width between wmin and wmax and
RRLG ⊆ ERLG × ERLG is the set of edges for pairs of
nodes for which at least one alignment constraint exists.

Next, FV C :ERLG → 2VC is a function mapping an element
to a set of visibility constraints where ∀e ∈ ERLG, |FV C(e)| ≥
1 (i.e., each element is visible for at least one viewport width).

In addition, FWC : ERLG → 2WC is a function map-
ping an element to a set of width constraints, such that
∀e ∈ ERLG and ∀wca = (xa1,xa2,ma, ca) ∈ FWC(e) and
∀wcb = (xb1,xb2,mb, cb) ∈ FWC(e), whenever wca 6= wcb,
the condition xa1 ≥ xb2 ∨ xa2 ≤ xb1 must hold. That is, for
each page element, any viewport width should fall within the
bounds of at most one of that element’s set of width constraints.

Finally, FAC : RRLG → 2AC is a function that maps
an edge to a set of alignment constraints, such that ∀r ∈
RRLG and ∀aca = (xa1,xa2, ta,Pa) ∈ FAC(r) and ∀acb =
(xb1,xb2, tb,Pb) ∈ FAC(r), if aca 6= acb, then xa1 ≥ xb2 ∨
xa2 ≤ xb1. That is, for a particular viewport width, there is at
most one alignment constraint for a pair of web page elements.

B. Constructing the Responsive Layout Graph (RLG)
To generate the RLG, the approach first inspects the layout

of the web site in question at a series of viewport widths,
gaining an overall understanding of the responsive layout and
recording its DOM at each viewport width. This represents the
starting point for the RLG construction algorithm.

Using the DOMs gathered in the method’s initial phase, the
second phase of our approach extracts the three categories of
constraints, as defined in Section III-A. First, the elements
visible at each viewport width are analysed to determine
the visibility constraints, paying special attention to elements

Table I. RESPONSIVE WEB PAGES USED IN OUR EMPIRICAL STUDY
“LOC” refers to lines of code after a standard formatting process. A CSS block (“Blocks”)
is a series of individual declarations (“Decls”) applied to a class of HTML elements.

Web site name HTML CSS
(homepage URL studied) LOC DOM Nodes LOC Blocks Decls
Aftrnoon
(http://aftrnoon.com) 205 112 2658 458 1000
Briefing
(http://briefi.ng) 396 196 5814 1147 2173
Bootstrap
(http://getbootstrap.com) 293 149 8711 1756 3199
Reserve
(http:// reserve.com) 230 125 6792 1375 2539
Responsive Process
(http:// responsiveprocess.com) 267 142 937 165 376

appearing or disappearing at a particular viewport width. Next,
the extraction of alignment constraints begins by creating an
element hierarchy at each viewport width where an element’s
parent is the smallest element to completely contain it, as
originally defined by Choudhary et al. [15]. Then, the relative
alignment of related elements is generated through the use of
DOM coordinates, and subsequently analysed to determine how
the elements rearrange themselves to fit within the viewport.
Finally, the method examines the width of each element and its
parent element across all viewport widths, thereby producing a
set of width constraints for that particular element.

To detect layout faults, our approach performs the previous
two steps for both the modified and original versions of the
web page under test. Next, it performs a simple pairwise
comparison on the two generated RLG models, considering all
three categories of constraints and reporting any differences.

IV. EMPIRICAL EVALUATION
To assess the effectiveness of our approach we applied it to

5 responsively designed web sites that evidenced the following
characteristics: (i) they were live and functional as of May 2015,
(ii) their developers either used popular RWD frameworks such
as Bootstrap [12] and Foundation [13] or hand-coded their own
solutions, and (iii) they varied in their size and complexity, as
shown by Table I. The primary aim of this experiment was
to see how effective the generated RLGs are when used to
detect different types of changes made to web pages. To answer
this question, we developed and applied mutation operators
that insert faults into a web site’s CSS files and then checked
whether our method could detect these changes.

A. Methodology
We implemented the approach described in Section III as

a prototype tool, called “REDECHECK” (REsponsive DEsign
CHECKer, pronounced “Ready Check”). It is written in the
Java programming language, and where appropriate to avoid
duplicating effort, re-uses methods from the alignment graph
code of the X-PERT tool [16]. To conduct the experiment, we
ran REDECHECK on an iMac running OS X Yosemite with
8GB of RAM and used Selenium (2.43.1) [17] to drive a recent
version of Google Chrome (42.0.2311.152).

For each subject web page, we first downloaded all files
required to render the page, before automatically generating a
set of modified versions of the page (i.e., the mutants). We then
ran REDECHECK on both the original version of the web page
and each mutant and then classified each comparison result.

Through manipulation of the CSS rules found in the page’s
style sheet, these small changes affect the page’s layout. For
this experiment, we created two mutation operators to inject

http://aftrnoon.com
http://briefi.ng
http://getbootstrap.com
http://reserve.com
http://responsiveprocess.com

Table II. MUTATION ANALYSIS RESULTS FOR REDECHECK

Web Page TP TN FP FN Recall
Aftrnoon 14 5 0 1 93.3%
Briefing 19 1 0 0 100%
Bootstrap 13 1 0 6 68.4%
Reserve 18 1 0 1 94.7%
Responsive Process 16 4 0 0 100%

the changes. The first, which we refer to as the breakpoint
mutation operator, targeted the values used in min-width and
max-width declarations in the media queries. This operator
adjusts the value by an amount selected at uniform random
between ±10 of the original, as in the following example:

@media (min-width: 640px) → @media (min-width: 647px)

The second operator, referred to as the rule mutation opera-
tor, targets the width, margin, and padding declarations of
the style sheet, again adjusting values by ±10 of the original
at uniform random, as shown in the following example:

li { width: 75% } → li { width: 73% }

To inject mutants, REDECHECK analyzes the HTML of the
web page to find all the CSS selectors and media queries linked
to each element appearing on the web page. (This is so that the
tool does not mutate parts of the style sheet that are irrelevant
for the web page concerned.) REDECHECK first parses the web
page’s CSS files, and then extracts a list of potential mutation
locations for each operator. To create a mutant, REDECHECK
picks an operator with an even probability, then selects a CSS
location at uniform random, and then applies the operator itself.

We used REDECHECK to create 20 mutant versions of each
web page. We then used our tool to generate an RLG of the
original page and the mutant version, using a sampling step size
of 60 pixels in a viewport width range of 400–1300 pixels. We
chose the step size of 60 pixels since, during REDECHECK’s
development and initial experimentation, we observed that it
provided a good compromise between the quality of the model
generated and the effort required to construct it (i.e., the number
of viewport widths that needed to be sampled).

Next, REDECHECK compares the two DOMs of the pages
and their respective RLGs and categorizes the result as either a
true positive, true negative, false positive, or false negative. We
categorize the result as “positive” if the RLGs are different, else
it is “negative”. Whether the positive/negative is true or false
depends on whether the DOMs are actually identical or not.
(Even though we purposely restrict mutation locations to CSS
rules and queries actually linked to elements appearing on the
page, equivalent mutants are still possible if, for example, the
mutated rule is later overwritten by a subsequent declaration in
the style sheet.) If the DOMs are different, a “positive” result
is a true positive, otherwise it is a false positive. Conversely,
a “negative” result is a false negative when the DOMs are
different, otherwise, it is a true negative.

B. Threats to Validity
While it is possible that the implementation of RE-

DECHECK may be incorrect, we managed this validity concern
through extensive manual inspection – aided by automated
methods provided by the Chrome Developer Tools – of
responsive layout graphs generated for a wide variety of
web sites. Thorough testing of the third-party tools used

in REDECHECK, like an HTML and CSS parser and X-
PERT [16], also mitigated the risk of defects compromising the
empirical results. Moreover, all of the tedious, yet important,
analyses – such as the DOM comparisons needed to classify the
results into categories such as true positive and false negative –
were performed using automated and well-tested procedures.

In addition, the empirical results could be compromised if
our mutation operators do not introduce layout faults that are
often evident in responsively designed web pages. While it is
true that we did not insert all of the types of faults that could
conceivably be made by web developers (e.g., we do not mutate
the float property in the CSS files), our mutation operators
are both meaningful and varied. By mutating the min-width,
max-width, width, padding, and margin properties, we
introduced 20 mutants into each of the 5 web sites, thus creating
a total of 100 mutants that represent a wide variety of faults
that real-world web developers might create.

C. Results
Table II presents the results of comparing the RLG models

generated for the original web pages against the one derived
from the mutated versions of those pages. While a number
of equivalent mutants (i.e., true negatives) were generated for
some of the subjects, in general, most mutants impacted the
DOM of each page. The results show that the RLG supports the
detection of a large proportion of the injected changes, with no
false positives and only a small number of false negatives (i.e., 8
out of the 100 actual mutants). A careful manual analysis of the
false negative results reveals that the DOM changes resulting
from these CSS mutations were too subtle to cause a change in
the generated feature sets in the alignment constraints – typically
a very small shift in position of the element – resulting in no
change to the final RLG. In conclusion, the results reveal that
the RLG model effectively enables the detection of changes to
the subject web pages, with no misleading false positives.

D. Discussion
During the implementation and experimental evaluation of

REDECHECK, we observed some qualitative benefits associated
with this new method for detecting potential layout faults in
responsively designed web sites. First, it is important to stress
that the automated modeling of a responsive web site obviates
the need for a tester to pick viewport widths for inspection, only
study the defaults commonly advocated by current testing tools,
or accept the random selection of hopefully useful viewports.
This feature of REDECHECK is especially beneficial since we
noticed that responsive faults are often found at hard-to-predict
viewport widths between the breakpoints standardly employed
in RWD. We anticipate that testers will also profit from using
REDECHECK as it creates a report both highlighting the set
of viewport widths that have potential layout faults and giving
valuable context in the form of the RLG and the DOMs. This
is in contrast to other RWD testing tools that either do not
pinpoint differences or only coarsely note a difference in a
single viewport width. While it is true that REDECHECK may
highlight layout differences that a web developer intended, we
argue that the contextualized and informative nature of our
tool’s report partially mitigates this important concern.

It is worth noting again that REDECHECK could not detect
certain subtle faults involving very small changes in the position
of a web element. Yet, in our experience, humans viewing these
mutated sites were also not able to notice these layout faults,
thus suggesting that our tool’s deficiency is indeed minimal.

Finally, a tester wishing to find layout failures across an entire
responsive site would need to run REDECHECK on a page-by-
page basis – a process that is, although potentially cumbersome,
fully amenable to automation. With that said, we also found that
REDECHECK can effectively test a responsive site implemented
according to any viable strategy for introducing responsiveness
(i.e., using bespoke CSS declarations or leveraging an existing
framework such as Bootstrap [12] or Foundation [13]).

V. RELATED WORK
Since, to the best of our knowledge, this paper is the first

to tackle the challenges associated with testing responsively
designed web sites, this section briefly reviews the related
work in the broader area of web testing. Choudhary et al. have
developed several methods for cross-browser testing (XBT),
the most recent of which is called X-PERT [15]. Developed
by Dallmeier et al., WEBMATE is similar to X-PERT in
that it also focuses on cross-browser testing [18]. Since the
primary focus of both was single-resolution XBT they are,
unlike REDECHECK, not tailored to responsive design.

Perhaps the most similar work to ours is that of Mahajan et
al. [19], which aimed to automatically find differences between
a graphic of how a web page should look and its final design.
However, since this technique only operates at a single, fixed
viewport width – and thus it would require a substantial number
of graphics to fully test the fluidity of a responsive web page –
it is not well suited to the challenges in this paper’s problem
domain. The WRAITH tool [10] similarly suffers from the
same difficulties as Mahajan et al.’s method in that it too
differences web page graphics on a per-resolution basis rather
than considering the responsive layout of sites.

Currently, there are also several developer tools that address
some of the concerns associated with testing responsive web
sites. Multi-screenshot tools, such as Kersley’s [20], allow a
tester to view a site at several common viewport widths while
viewport resizers like RESPONSIVEPX [11], support the fine-
tuning of the viewport size for testing a specific device. While
these may be useful, they are not a substitute for an automated
method like the one provided by REDECHECK.

VI. CONCLUSION AND FUTURE WORK
Even though there are clear benefits to making responsive

web sites [21], most Fortune 500 companies do not have a
mobile-friendly site [22] – an alarming trend due, at least in
part we believe, to the inherent difficulties of both developing
and satisfactorily testing responsive web sites. Since recent
experiments show that programming HTML and CSS is error-
prone and difficult [8], we think that developers and testers
will welcome tools that automatically test responsive sites.

As such, this paper presents an automated method for detect-
ing potential faults in the layout of responsively designed pages,
thereby tackling the challenges of implementing and testing
web sites that adhere to RWD principles, To experimentally
evaluate this new approach, we implemented it as a tool called
REDECHECK and applied it to 5 responsive web sites that
were live as of May 2015. In support of assessing whether or
not REDECHECK could detect small changes in a web page’s
layout, we designed breakpoint and rule mutation operators to
manipulate the declarations found in a site’s CSS style sheets.

The core focus of our future work is to filter the results
generated by REDECHECK so that only unintentional changes,
such as the one presented in Section II-B, are reported. In
addition, to further evaluate the effectiveness of our approach

we will conduct experiments with both a greater variety
of responsively designed sites and more mutation operators.
Finally, we plan to extend REDECHECK with new features
to support more of the complexities of real-world pages. For
instance, we will add the capability to handle JavaScript code
that responds to user interaction and enhance our model of a
site’s responsive behavior so that it incorporates characteristics
of web elements (e.g., the font and color of headers). While
the second of these two features will expand the scope of
REDECHECK beyond of the important domain of responsive
layout faults, we judge that the combination of the suggested
future work with the sophisticated method presented in this
paper will yield a useful tool that effectively aids developers
and testers as they create high-quality responsive web sites.

REFERENCES
[1] A. Van’t Hof, H. Jamjoom, J. Nieh, and D. Williams, “Flux: Multi-surface

computing in Android,” in Proc. of the 10th EuroSys, 2015.
[2] Statista, “Statistics portal,” accessed: 2015-27-02. [Online]. Available:

http://goo.gl/19fZcq
[3] R. Hof, “Google research: No mobile site = lost customers,” Forbes,

2012. [Online]. Available: http://goo.gl/khJ09v
[4] E. Marcotte, Responsive Web Design. A Book Apart, 2014.
[5] A. Gustafson, Adaptive Web Design. Easy Readers LLC, 2011.
[6] J. Hartmann, A. Sutcliffe, and A. De Angeli, “Investigating attractiveness

in Web user interfaces,” in Proc. of the 25th SIGCHI, 2007.
[7] D. Cyr, M. Head, and A. Ivanov, “Design aesthetics leading to m-loyalty

in mobile commerce,” Inf. Manag., vol. 43, no. 8, 2006.
[8] T. H. Park, B. Dorn, and A. Forte, “An analysis of HTML and CSS syntax

errors in a Web development course,” Trans. Comput. Educ., vol. 15,
no. 1, 2015.

[9] StackExchange Data Explorer, “Prevalence of Bootstrap, Foundation,
and Responsive as tags,” accessed: 2015-06-05. [Online]. Available:
http://goo.gl/sEknaT

[10] BBC News, “Wraith,” accessed: 2015-02-02. [Online]. Available:
https://github.com/BBC-News/wraith

[11] R. Sharp, “ResponsivePX: Find that tricky breakpoint,” accessed:
2015-02-02. [Online]. Available: http://responsivepx.com/

[12] M. Otto and J. Thornton, “Bootstrap: Mobile-first and responsive
front-end framework,” accessed: 2015-04-05. [Online]. Available:
http://getbootstrap.com/

[13] ZURB Corporation, “Foundation: Responsive front-end framework,”
accessed: 2015-04-05. [Online]. Available: http://foundation.zurb.com/

[14] C. Bloq, “5 of this year’s vertical scrolling trends,” accessed: 2015-
31-07. [Online]. Available: http://www.creativebloq.com/web-design/
vertical-scrolling-trends-2015-121413698

[15] S. Roy Choudhary, M. R. Prasad, and A. Orso, “X-PERT: Accurate
identification of cross-browser issues in Web applications,” in Proc. of
the 35th ICSE, 2013.

[16] ——, “X-PERT: A web application testing tool for cross-browser
inconsistency detection,” in Proc. of ISSTA, 2014.

[17] “Selenium: Web browser automation,” accessed: 2015-02-02. [Online].
Available: http://www.seleniumhq.org/

[18] V. Dallmeier, B. Pohl, M. Burger, M. Mirold, and A. Zeller, “WebMate:
Web application test generation in the real world,” in Proc. of ICSTW,
2014.

[19] S. Mahajan and W. G. J. Halfond, “Finding HTML presentation failures
using image comparison techniques,” in Proc. of the 29th ASE, 2014.

[20] M. Kersley, “Responsive design testing,” accessed: 2015-02-02. [Online].
Available: http://mattkersley.com/responsive/

[21] C. Dougherty, “Google adds ‘mobile friendliness’ to its search criteria,”
The New York Times, 2015.

[22] T. McCorkindale and M. Morgoch, “An analysis of the mobile readiness
and dialogic principles on Fortune 500 mobile websites,” Pub. Rel. Rev.,
vol. 39, no. 3, 2013.

http://goo.gl/19fZcq
http://goo.gl/khJ09v
http://goo.gl/sEknaT
https://github.com/BBC-News/wraith
http://responsivepx.com/
http://getbootstrap.com/
http://foundation.zurb.com/
http://www.creativebloq.com/web-design/vertical-scrolling-trends-2015-121413698
http://www.creativebloq.com/web-design/vertical-scrolling-trends-2015-121413698
http://www.seleniumhq.org/
http://mattkersley.com/responsive/

