
Efficient Mutation Analysis of Relational Database Structure
Using Mutant Schemata and Parallelisation

Chris J. Wright
Department of Computer Science

University of Sheffield

Gregory M. Kapfhammer
Department of Computer Science

Allegheny College

Phil McMinn
Department of Computer Science

University of Sheffield

Abstract—Mutation analysis is an effective way to assess
the quality of input values and test oracles. Yet, since this
technique requires the generation and execution of many
mutants, it often incurs a substantial computational cost. In
the context of program mutation, the use of mutant schemata
and parallelisation can reduce the costs of mutation analysis.
This paper is the first to apply these approaches to the mutation
analysis of a relational database schema, arguably one of the
most important artefacts in a database application. Using a
representative set of case studies that vary in both their purpose
and structure, this paper empirically compares an unoptimised
method to four database structure mutation techniques that
intelligently employ both mutant schemata and parallelisation.
The results of the experimental study highlight the performance
trade-offs that depend on the type of database management
system (DBMS), underscoring the fact that every DBMS does
not support all types of efficient mutation analysis. However,
the experiments also identify a method that yields a one to ten
times reduction in the cost of mutation analysis for relational
schemas hosted by both the Postgres and SQLite DBMSs.

I. INTRODUCTION

Having recently found use in application areas ranging
from politics and government [1] to the simulation of
astrophysical phenomenon [2], the relational database is a
key component of real-world software. The schema of a
relational database specifies the types of data that will be
used by an application, how the data will be organized into
tables, which data values are valid, and what relationships
may exist between them. Since the relational schema defines
what data will be both accepted into and rejected by the
database management system (DBMS), it is an important
part of a database application that must be tested.

One method for testing a relational schema involves
automatically generating a series of SQL INSERT statements
and data values that are designed to highlight potential flaws
in the database’s structure [3]. Of course, it is important to
assess the effectiveness of the generated data. While it may
be useful to accomplish this task by measuring the coverage
of, for instance, the source code of the database application
[4] or constraints in the relational schema [3], this paper
instead presents a method that employs mutation analysis.

Using mutation operators that change the constraints of
a relational schema, a database structure mutation analysis
technique gives an indication of the thoroughness with which
the INSERT statements and values exercise the schema. Yet,
mutation analysis often incurs a substantial computational

cost because it requires the generation and execution of
many mutants [5]. Since the use of mutant schemata and
parallelisation can reduce the cost of mutation analysis in
the context of programs [6], [7], this paper applies these
methods to the mutation analysis of a relational schema.

In contrast to Kapfhammer et al.’s approach to the muta-
tion analysis of database structure [3], this paper presents
a “Full Schemata” method that creates a large database
schema containing all of the mutant tables and a “Minimal
Schemata” technique that improves upon “Full Schemata”
by reducing both the number of database manipulation state-
ments executed during mutation analysis and the size of the
schema holding all of the mutants. Since “Full Schemata”
requires the execution of many database interactions that
can run at the same time, this paper describes two addi-
tional approaches – “Up-Front Schemata” and “Just-in-Time
Schemata” – that use parallelisation to further reduce the
cost of mutation analysis with “Full Schemata”. While the
“Up-Front Schemata” method evaluates each independent
iteration of mutant evaluation in parallel, the “Just-in-Time
Schemata” technique adds the mutants to the database both
in parallel and at the moment before they are needed.

Employing six case studies and two widely-used DBMSs,
Postgres and SQLite, this paper’s empirical study compares
and contrasts the performance of the original method from
[3] and the four new methods that leverage both mutant
schemata and parallelisation. The experimental results reveal
a one to ten times reduction in the cost of mutation analysis,
with “Minimal Schemata” being the best for databases
hosted by SQLite and both “Just-in-Time Schemata” and
“Minimal Schemata” being good choices for Postgres.

In summary, the contributions of this paper are as follows:
1) The application of the mutant schemata technique

for relational database schema testing, including a
schemata representation, a schemata generation algo-
rithm, and an approach for execution (Section III);

2) An empirical study that uses real-world case studies to
evaluate the improvement in time-efficiency associated
with four new methods that employ both mutant
schemata and parallelisation (Section IV); and

3) The description of how differences between DBMSs
influence mutation analysis and the demonstration of
a method that yields significant cost reductions despite
these variations in functionality (Sections III and IV).

CREATE TABLE USER_INFO (
USER_ID VARCHAR(50) NOT NULL PRIMARY KEY,
...

);
CREATE TABLE USAGE_HISTORY (
USER_ID VARCHAR(50) NOT NULL,
SESSION_ID INTEGER,
LINE_NO INTEGER,
COMMAND_SEQ INTEGER,
COMMAND VARCHAR(50),
PRIMARY KEY (USER_ID)
FOREIGN KEY (USER_ID)

REFERENCES USER_INFO (USER_ID)
);
CREATE TABLE UNIX_COMMAND (...);
CREATE TABLE TRANSCRIPT (...);
CREATE TABLE RACE_INFO (...);
CREATE TABLE OFFICE_INFO (...);
CREATE TABLE DEPT_INFO (...);
CREATE TABLE COURSE_INFO (...);

(a) Snippet of a relational database schema with a mutant,
corresponding to the addition of a primary key (highlighted)

INSERT INTO USER_INFO
VALUES (’laura’, ...)

INSERT INTO USAGE_HISTORY
VALUES (’laura’, 1, 10, 1, ’awk’)

INSERT INTO USAGE_HISTORY
VALUES (’laura’, 2, 10, 2, ’grep’)

(b) A sequence of INSERT statements that “kill” the mutant

Figure 1. An example relational database schema (part a) and an
accompanying test suite (part b)

II. BACKGROUND

A. Mutation Analysis of Database Structure

A relational database schema defines the types of data
that will be stored in a database and how that data is
organized into tables. Through the specification of so-
called integrity constraints, it defines both what relation-
ships exist between different columns of data and, in
addition to the basic type information (e.g., INTEGER),
the sorts of values that are permissible for each column.
Figure 1 shows a snippet of the database schema used
in an open-source example called UnixUsage (available
at http://sourceforge.net/projects/se549unixusage), used to
record UNIX commands run by students together with
personal student information. The database schema includes
a PRIMARY KEY integrity constraint, ensuring all rows
of the USER_INFO table are uniquely identifiable; a NOT

NULL constraint, preventing the omission of values for the
USER_ID field; and a FOREIGN KEY constraint, ensuring all
values in the USER_ID column of the USAGE_HISTORY table
refer to some existing value in a row of the USER_INFO

table. Although not present in this example, CHECK con-
straints can also be used to place additional limitations on the
values accepted in a column, (e.g. LINE_NO > 0). Any SQL
INSERT statement involving data that do not conform to
these integrity constraints will be “rejected” (i.e., the DBMS
will not add that data to the tables of the database). For
example, the relational database schema in Figure 1(a) will
disallow an attempt to insert a row into USAGE_HISTORY

when the value for USER_ID is NULL.

K ← ∅
for each mutant do

Create tables in database for mutant
for each sqlInsertStatement in testSuite do

originalResult← Pre-computed result of insert with non-mutant
mutantResult ← executeWithDBMS(sqlInsertStatement)
if originalResult 6= mutantResult then

K ← K ∪ {mutant}
end if

end for
Remove tables in database for mutant

end for

Figure 2. Kapfhammer et al.’s mutation analysis algorithm [3], referred
to as the “Original” approach in this paper

Defining a suitable database schema is one of the first
steps in developing a database application. As such, any
mistakes in the relational schema can ripple to subsequent
stages of the application’s development, thus potentially
increasing the costs of fixing the problem and decreasing
overall quality. Responding to this issue, Kapfhammer et
al. [3] introduced a mutation analysis technique for assessing
the quality of test suites that exercise a database’s integrity
constraints. The method involves mutating the constraints of
a database’s schema – for instance, by removing columns
from a primary key or adding a NOT NULL constraint to a
column. (The reader is referred to reference [3] for complete
details about this approach to database structure mutation.)

The evaluated test suites are a series of SQL INSERT

statements. If an INSERT is accepted for the original unmu-
tated database structure (i.e., the data adheres to the database
schema’s integrity constraints and was successfully inserted
into the database) but rejected for the mutant – or vice
versa – the mutant is killed because the test suite revealed
a difference in behaviour. As an example, Figure 1(b) lists
a sequence of INSERT statements that can kill the mutant
shown in part (a) of the same figure (highlighted to show the
addition of a PRIMARY KEY column to the USAGE_HISTORY
table). Even though each INSERT is accepted with the origi-
nal database schema, the mutant database schema rejects the
third one because the additional PRIMARY KEY constraint
prevents duplication of USER_ID values.

Kapfhammer et al.’s approach to the mutation analysis of
database structure can be summarised by these steps:

1) Create the tables of a mutant structure in a database;
2) Execute the INSERT statements of the test suite; and
3) Compare the result of submitting each INSERT state-

ment to the mutant schema with the output from the
execution of the same statement with the original
database schema. (Typically, the result of an INSERT

is a boolean value returned by the database indicating
whether or not the INSERT was successful.)

The above steps are repeated for each mutant, with a
final mutation score computed as |K|/Number of Mutants,
where K is the set of killed mutants. The complete algorithm
appears more formally in Figure 2.

Although useful in assessing test suites, database schema
mutation – like most forms of mutation – is a method that
often incurs substantial computational costs. For traditional
mutation analysis involving programs, two approaches to
improving the time efficiency have included the creation of
“meta-mutants” through mutant schemata and simultaneous
mutant evaluation through parallelisation.

B. Mutant Schemata

Proposed by Untch et al. [8], the mutant schemata
approach aims to reduce the amount of time taken for
mutation analysis by combining an original program and
all of its mutants into a single “meta-mutant”. The creation
of this meta-mutant is realised at the source code level by
inserting conditional branches for each mutant, enabling the
execution of code specific to each individual mutant as for
their standalone versions, but without the need to create a
multitude of individual programs containing mostly identical
code. Furthermore, the approach avoids the need to compile
multiple files and repeatedly recompile the unchanged seg-
ments of source code for each mutant.

Note that to avoid any potential confusion between a
relational database schema and a mutant schemata in the
remainder of this paper, we will fully qualify the type of
schema being referenced, unless grammatical constraints
prevent us from doing so. Also, we will prefer “database
structure” to “database schema” to further reduce confusion.

C. Parallelisation

If a problem can be divided into a number of independent
tasks, it is often possible to reduce the overall running time
needed to complete them by executing them in parallel. This
may involve exploiting multi-core processors on a single
machine or using a multiple machine configuration such
as a grid. Previously, Schuler et al. [7] successfully em-
ployed parallelisation for program mutation analysis with the
JAVALANCHE tool. JAVALANCHE can execute multiple
Java program mutants simultaneously as a means of reducing
the time taken to evaluate a test suite.

III. IMPROVING THE EFFICIENCY OF MUTATION
ANALYSIS FOR DATABASE STRUCTURE

Using the ideas of mutant schemata and parallelisation,
we now present four different approaches to improving the
efficiency of mutation analysis of database structure.

A. Mutant Schemata

With the “Original” approach, introduced in Section II,
each mutant is evaluated one-by-one by creating the mutant’s
database tables, running the test suite, and then removing
the tables. To potentially speed up this process, we apply
the mutant schemata approach by creating a meta-mutant –
a large database schema containing all of the tables required
for each mutant. Some “housekeeping” is required to make

CREATE TABLE mutant_1_USAGE_HISTORY (
USER_ID VARCHAR(50) NOT NULL,
SESSION_ID INTEGER,
LINE_NO INTEGER,
COMMAND_SEQ INTEGER,
COMMAND VARCHAR(50),
PRIMARY KEY (USER_ID)
FOREIGN KEY (USER_ID)
REFERENCES USER_INFO (mutant_1_USER_ID)

);
CREATE TABLE mutant_1_USER_INFO (...);
CREATE TABLE mutant_1_UNIX_COMMAND (...);
CREATE TABLE mutant_1_TRANSCRIPT (...);
CREATE TABLE mutant_1_RACE_INFO (...);
CREATE TABLE mutant_1_OFFICE_INFO (...);
CREATE TABLE mutant_1_DEPT_INFO (...);
CREATE TABLE mutant_1_COURSE_INFO (...);

CREATE TABLE mutant_2_USAGE_HISTORY (
USER_ID VARCHAR(50) NOT NULL,
SESSION_ID INTEGER,
LINE_NO INTEGER,
COMMAND_SEQ INTEGER,
COMMAND VARCHAR(50) NOT NULL,
FOREIGN KEY (USER_ID)
REFERENCES USER_INFO (mutant_2_USER_ID)

);
CREATE TABLE mutant_2_USER_INFO (...);
CREATE TABLE mutant_2_UNIX_COMMAND (...);
CREATE TABLE mutant_2_TRANSCRIPT (...);
CREATE TABLE mutant_2_RACE_INFO (...);
CREATE TABLE mutant_2_OFFICE_INFO (...);
CREATE TABLE mutant_2_DEPT_INFO (...);
CREATE TABLE mutant_2_COURSE_INFO (...);
...

(a) Meta-mutant snippet

1. INSERT INTO mutant_1_USER_INFO
VALUES (’laura’, ...);

2. INSERT INTO mutant_1_USAGE_HISTORY
VALUES (’laura’, 1, 10, 1, ’awk’);

3. INSERT INTO mutant_1_USAGE_HISTORY
VALUES (’laura’, 2, 10, 2, ’grep’);

4. INSERT INTO mutant_2_USER_INFO
VALUES (’laura’, ...)

5. INSERT INTO mutant_2_USAGE_HISTORY
VALUES (’laura’, 1, 10, 1, NULL)

(b) Snippet of an example test suite

Figure 3. Using the “Full Schemata” approach. (a) Snippet of the
meta-mutant database schema for UnixUsage, showing the prefixed tables
included for each mutant, with text highlighted to show mutations and
modified references to other mutant tables. (b) Form of the test suite, with
the INSERTs modified to match the table names in the meta-mutant.

this work, since there cannot be more than one table in the
database with the same name, and there will likely be several
mutant versions of a table that need to be combined into
the meta-mutant. Therefore, we assign a unique identifier to
each mutant and use this to prefix identifiers pertaining to
a mutant so as to produce unique table names (and named
constraints etc.). Using an identifier we can then “activate”
a single mutant by prefixing insert statements with it.

Following renaming, there are different ways in which
the mutants may be combined into a single meta-mutant.
We explore two approaches:

1) Full Schemata: The “Full Schemata” approach in-
volves creating a meta-mutant out of all the renamed tables
of each mutant. An example snippet can be seen in Figure
3 for the UnixUsage example, which was introduced in
Figure 1 and discussed in the last section.

. 1. Meta-mutant creation
for each mutant do

Prefix names of tables in mutant with unique mutant ID
end for
Create tables in database for all mutants

. 2. Mutant evaluation
K ← ∅
for each mutant do

killed ← false
for each sqlInsertStatement in testSuite do

sqlInsertStatement′← sqlInsertStatement modified to use unique
mutant ID of mutant for table names

originalResult← Pre-computed result of insert with non-mutant
mutantResult ← executeWithDBMS(sqlInsertStatement)
if originalResult 6= mutantResult then

K ← K ∪ {mutant}
end if

end for
end for

. 3. Clean up
Remove tables in database for all mutants

Figure 4. “Full Schemata” mutation analysis algorithm

The algorithm for mutation analysis using “Full
Schemata” is shown in Figure 4. Since all tables involving
the original database structure and its mutants may be
created together at the same time, and also later all removed
simultaneously, the respective SQL CREATE TABLE and
DROP TABLE commands may be issued in a single database
interaction, potentially speeding up the complete process.

Evaluation of mutants using a test suite can then be
conducted in a similar fashion to the “Original” approach,
repeating each INSERT statement for each mutant, but with
the automated adjustment of table names referenced in each
INSERT statement so that it exercises the correct table
belonging to the mutant. An example of INSERT renaming
and execution of the test suite for each mutant in the meta-
mutant can be seen in Figure 3(b).

Following mutant evaluation, all tables in the meta-mutant
may be deleted from the database by concatenating the SQL
DROP TABLE commands into a single database interaction.

2) Minimal Schemata: The “Minimal Schemata” pro-
duces a meta-mutant by combining the original database
schema with only the tables for each individual mutant
that have actually been modified – the mutant’s so-called
affected tables. An example meta-mutant for UnixUsage
can be seen in Figure 5(a). The first two mutants involve
modifications to the USAGE_HISTORY table only, and not any
of the other tables also belonging to the database schema.
Therefore, only the modified versions of USAGE_HISTORY

appear in the meta-mutant (mutant1_USAGE_HISTORY and
mutant2_USAGE_HISTORY) and not additional duplications
of the other tables. If any affected tables have foreign
key relationships with unaffected tables, the foreign key is
left unchanged to reference a common unmodified version
of the table – which is copied from the original, unmu-
tated, database schema. Therefore, the mutant versions of

CREATE TABLE USAGE_HISTORY (
USER_ID VARCHAR(50) NOT NULL,
SESSION_ID INTEGER,
LINE_NO INTEGER,
COMMAND_SEQ INTEGER,
COMMAND VARCHAR(50),
FOREIGN KEY (USER_ID)
REFERENCES USER_INFO (USER_ID)

);
CREATE TABLE USER_INFO (...);
CREATE TABLE UNIX_COMMAND (...);
CREATE TABLE TRANSCRIPT (...);
CREATE TABLE RACE_INFO (...);
CREATE TABLE OFFICE_INFO (...);
CREATE TABLE DEPT_INFO (...);
CREATE TABLE COURSE_INFO (...);

CREATE TABLE mutant_1_USAGE_HISTORY (
USER_ID VARCHAR(50) NOT NULL,
SESSION_ID INTEGER,
LINE_NO INTEGER,
COMMAND_SEQ INTEGER,
COMMAND VARCHAR(50),
PRIMARY KEY (USER_ID)
FOREIGN KEY (USER_ID)
REFERENCES USER_INFO (USER_ID)

);

CREATE TABLE mutant_2_USAGE_HISTORY (
USER_ID VARCHAR(50) NOT NULL,
SESSION_ID INTEGER,
LINE_NO INTEGER,
COMMAND_SEQ INTEGER,
COMMAND VARCHAR(50) NOT NULL,
PRIMARY KEY (USER_ID)
FOREIGN KEY (USER_ID)
REFERENCES USER_INFO (USER_ID)

);
...

(a) Meta-mutant snippet

1. INSERT INTO USER_INFO
VALUES (’laura’, ...);

2. INSERT INTO mutant_1_USAGE_HISTORY
VALUES (’laura’, 1, 10, 1, ’awk’);

3. INSERT INTO mutant_1_USAGE_HISTORY
VALUES (’laura’, 2, 10, 2, ’grep’);

4. INSERT INTO mutant_2_USAGE_HISTORY
VALUES (’laura’, 1, 10, 1, NULL);

(b) Snippet of an example test suite

Figure 5. Using the “Minimal Schemata” approach. (a) Snippet of
the meta-mutant database schema for UnixUsage – including only the
“affected” tables of each mutant – showing the prefixed tables included
for each mutant, with text highlighted to show mutations and (unmodified)
references to other mutant tables. (b) Form of the test suite, with the
INSERT statements modified to match the table names in the meta-mutant,
in order to manage the dependencies between affected and original tables.

USAGE HISTORY USER INFO

mutant 1 USAGE HISTORY mutant 1 USER INFO

mutant 2 USAGE HISTORY mutant 2 USER INFO

dependency with
“Full Schemata”

dependency with
“Minimal Schemata”

.

Figure 6. Dependencies between tables using the “Full Schemata”
and “Minimal Schemata” approaches for the UnixUsage example. The
“Minimal” approach relies upon common tables where the table is
unaffected by mutation, whereas the “Full” approach includes copies of
those tables for each mutant.

. 1. Meta-mutant creation
for each mutant do

mutant′ ← mutant with non-affected tables removed
Prefix names of table in mutant′ with unique mutant ID

end for
Create tables in database for all mutants and original structure

. 2. Mutant evaluation
K ← ∅
for each sqlInsertStatement in testSuite do

originalResult ← Pre-computed result of insert with non-mutant
affectedTable ← The table the insert is involving
affectedMutants ← The mutants that mutated affectedTable
executeWithDBMS(sqlInsertStatement)
for each affectedMutant do

sqlInsertStatement′← sqlInsertStatement modified to use unique
mutant ID of affectedMutant for table name

mutantResult ← executeWithDBMS(sqlInsertStatement′)
if originalResult 6= mutantResult then

K ← K ∪ {mutant}
end if

end for
end for

. 3. Clean up
Remove tables in database for all mutants

Figure 7. “Minimal Schemata” mutation analysis algorithm

USAGE_HISTORY reference the original USAGE_INFO ta-
ble in Figure 5(a). This critical difference with the “Full
Schemata” approach is illustrated in Figure 6.

While the “Minimal Schemata” approach aims to reduce
the number of tables that the DBMS must store, it influences
the way mutation analysis must be performed and the
manner in which the INSERT statements of the test suite
are applied. Care must be taken because the meta-mutant
involves tables that are now common to several mutants. As
such, the insertion of any common data must be managed
to ensure that it is present at the time it is needed by the
dependent mutant tables, and not before, so that it does not
interfere with the correct evaluation of each mutant.

Therefore, instead of re-running the test suite from start
to finish each time for each mutant, as with the approaches
previously described, evaluation of mutants works on an
INSERT statement-by-statement basis, as shown in Figure 7.
The algorithm works down the list of INSERTs in the test
suite, one-by-one. First, the INSERT is executed unmodified,
so that common data is added to the database for the later
evaluation of mutant tables that may reference it. Then, the
INSERT is automatically modified for each mutant version of
the table in the meta-mutant and executed. In this way, each
mutant with an affected version of the table is partially eval-
uated within the same step of the test suite. Full evaluation of
all mutants is not completed until the final INSERT statement
of the test suite is processed. An example set of INSERTs
can be seen in Figure 5(b). First, an INSERT is made to the
USER_INFO table. Then INSERTs can be made for each of
the mutant tables that have a common reference to it.

. 1. Meta-mutant creation
for each mutant do

Prefix names of tables in mutant with unique mutant ID
end for

. 2. Mutant evaluation
K ← ∅
parallel for each mutant do

Create tables in database for mutant
for each sqlInsertStatement in testSuite do

originalResult← Pre-computed result of insert with non-mutant
mutantResult ← executeWithDBMS(sqlInsertStatement)
if originalResult 6= mutantResult then

K ← K ∪ {mutant}
end if

end for
Remove tables in database for mutant

end parallel for

Figure 8. “Just-in-Time Schemata” mutation analysis algorithm

B. Parallelisation

The use of mutant schemata for database structure gives
rise to the possibility of easily parallelising mutant evalua-
tion; mutants exist simultaneously in a database, and many
database management systems allow for concurrent access
and manipulation of the data. We describe two ways in which
the mutant schemata approach may be parallelised:

1) Up-Front Schemata: The “Up-Front” approach is
essentially the same as the “Full Schemata” approach
(Figure 4), but with mutation evaluation performed in par-
allel in order to decrease overall mutation analysis time.

2) Just-in-Time Schemata: The observation behind the
“Just-in-Time Schemata” approach is that the meta-mutant
does not have to be completely created in the database before
mutation evaluation. The database tables corresponding to
each mutant can be added over time, and also in parallel, just
before (hence the name) the mutant needs to be evaluated,
and deleted straight afterwards. As such, following table
and identifier relabelling, the main loop the “Just-in-Time”
approach (Figure 8) is almost identical to that of the original
approach (Figure 2), except it is executed in parallel.

C. Summary of techniques

Figure 9 shows the hierarchy and relationships of the
techniques to improve the efficiency of the “Original” ap-
proach, described in Section II-A. We have implemented
two mutant schemata approaches: “Full Schemata” (Section
III-A1) and “Minimal Schemata” (Section III-A2). The
“Full” approach involves a lot of duplication of the tables of
the original database, however it is very easy to parallelise
– as implemented with the “Up-Front” (Section III-B1) and
“Just-in-Time” (Section III-B2) methods. The “Minimal” ap-
proach involves implicit dependencies of INSERT statements
across mutants’ tables and tables from the original database
structure, rendering parallelisation difficult. We leave this as
an issue for future work, as mentioned in Section VI.

Full

Normal Schemata

Minimal

Up front Just in time

Mutant
Representation

Parallelisation
Strategy

“Original”

“Just-in-Time Schemata”“Up-Front Schemata”

“Minimal Schemata”“Full Schemata”

Figure 9. The relationships between techniques in the empirical study

Table I lists some equations describing the characteristics
of each algorithm with respect to the database. Naturally,
the “Original” approach has the fewest tables present in
the database at any one time, as it evaluates each mutant
one-by-one, resulting in the database having the lowest
“load” at any one time. In this aspect, only “Just-in-Time
Schemata” is similar, creating tables in parallel as it needs
them. However, both are more expensive in terms of atomic
CREATE and DROP table statements – all others have a
constant number of interactions (just 2). All approaches in-
volve executing the entire test suite for every mutant, except
“Minimal”, which tries to minimize this aspect of mutation
analysis. While this is designed to reduce the number of
database interactions, this depends on the database structure
and the number of dependencies between tables.

However, the characteristics of the underlying DBMS
limit a purely formal analysis, and for this reason this paper
also reports on an empirical study involving a series of case
study database schemas hosted by two different DBMSs.

IV. EMPIRICAL STUDY

A. Experimental Setup

The performance of the techniques under various condi-
tions are evaluated using a selection of 6 case study database
schemas, which range in the number of tables, columns, and
constraints they involve (as well as the number of mutants
that can be generated for them), as detailed in Table II.
Cloc is part of the data output functionality for a popu-
lar open-source application (http://cloc.sourceforge.net) that
counts the number of code, blank, and comment lines in a
directory or archive for a large number of programming lan-
guages. JWhoisServer is from a freely available Java-based
“WHOIS” server implementation (http://jwhoisserver.net).
RiskIt is used in an insurance adjustment application
(http://sourceforge.net/projects/riskitinsurance) that models
the probability of an individual making a claim to calcu-
late an appropriate premium cost. Both NistDML182 and
NistDML183 are from the SQL Conformance Test Suite
of the National Institute of Standards and Technology
(NIST) (http://www.itl.nist.gov/fipspubs/fip193.htm). Finally,
UnixUsage is a schema from the logging application intro-
duced in Section II, presented in digested form in Figure 1.

Table I
DATABASE INTERACTION CHARACTERISTICS OF THE TECHNIQUES

Technique Simultaneous tables
in the database

‘Create’ and ‘Drop’
statements executed

‘Insert’ statements
executed

Original T 2 × T M × I

Full
Schemata T × M 2 M × I

Minimal
Schemata T + M 2 I + (M × Imin)

Up-Front
Schemata T × M 2 M × I

Just-in-
Time

Schemata
T ≤ Sim ≤ T ×P 2 × M M × I

T = number of tables in a case study
P = number of parallel processes
M = number of mutants
I = number of INSERT statements
Imin = minimal number of INSERTs (0 < Imin ≤ I)
Sim = number of simultaneous tables in the database

Each of the case studies were evaluated using the Postgres
and SQLite DBMSs, chosen because of their significantly
different architecture and wide use. SQLite is an embedded
database that writes data to one file, designed for single
clients. Alternatively, Postgres is a client-server database that
is highly scalable, supporting tables up to 32TB in size [9],
and designed to allow many concurrent users.

To perform the experiments, we used the Java program-
ming language to implement our approach in the SchemaAn-
alyst tool [3]. SchemaAnalyst was compiled with the JDK 7
compiler and executed with the Oracle Java 1.7 64-bit virtual
machine for Linux. We executed the experiments on an
Ubuntu 12.04 machine, 3.2.0-27 GNU/Linux 64-bit kernel,
with a quad-core 2.4 GHz CPU and 12GB RAM. All files
were stored on a 280 GB local disk. For the parallel method,
we configured the Java code to use a fixed pool of eight
threads. The specific DBMS versions were Postgres 9.1.6
and SQLite 3.7.9, used in their default configurations. The
mutation operators of Kapfhammer et al. [3] produce some
mutants that are still-born [10] for some DBMSs – referred
to as “quasi-mutants” because they are immediately rejected
by some DBMSs and not others. The operators capable of
producing quasi-mutants were not used in this study.

We measured wall-clock time for mutation analysis with
each combination of approach, case study, and DBMS, re-
peating an experiment 30 times to estimate reliable averages
and medians, as well as to enable statistical analysis.

As SQLite does not allow multiple connections to mod-
ify the database simultaneously [11], we could not run
the parallel mutant schemata approaches for this DBMS
(i.e., “Full” and “Just-in-Time” Schemata). This is because
SQLite locks the database when running the SQL commands
that create, drop, and insert data into tables, thus rendering
our parallel approaches useless for this DBMS. Regardless
of this limitation, we included SQLite as it supports the
performance evaluation of the remaining techniques on a
DBMS with an architecture very different from Postgres.

Table II
DATABASE STRUCTURES USED FOR THE EMPIRICAL STUDY

Case study Ta
bl

es

C
ol

um
ns

C
he

ck
s

Fo
re

ig
n

ke
ys

N
ot

N
ul

ls

Pr
im

ar
y

ke
ys

U
ni

qu
es

To
ta

l C
on

st
ra

in
ts

M
ut

an
ts

Cloc 2 10 0 0 0 0 0 0 30
JWhoisServer 6 49 0 0 44 6 0 50 184
NistDML182 2 32 0 1 0 1 0 2 66
NistDML183 2 6 0 1 0 0 1 2 18
RiskIt 13 56 0 10 15 11 0 36 160
UnixUsage 8 32 0 7 9 7 0 23 69

Total 33 185 0 19 68 25 1 113 527

B. Empirical Results

Figures 10 and 11 show box plots comparing each of
our mutation schemata approaches with the “Original” ap-
proach for the Postgres and SQLite DBMSs respectively,
using the set of 30 execution times measured for each
approach. For each box, the middle line through the box
represents the median, while the upper and lower bounds
of the box represent the 1st and 3rd quartiles respectively,
with whiskers representing 1.5 × the interquartile range
and circles representing outliers. Where not obvious from
the box plots, we conducted tests for significance with the
nonparametric Wilcoxon rank sum test, using the sets of 30
execution times obtained with a particular DBMS and the
pair of approaches under scrutiny. A p-value of less than
0.05 is deemed to be significant. To complement significance
tests, the nonparametric Â12 statistic of Vargha and Delaney
[12] was used to compute effect sizes, which determine the
average probability that one approach out performs another.
We followed the guidelines of Vargha and Delaney in that
an effect size is deemed to be “large” if the value of Â12 is
< 0.29 or > 0.71, “medium” if Â12 is < 0.36 or > 0.64
and “small” if Â12 is < 0.44 or > 0.56. Values of Â12 close
to the 0.5 value are deemed to have no size.

We now present an analysis of these results in the context
of four research questions (RQs):

RQ1: Do mutation schemata approaches improve the
efficiency of mutation analysis for database structure?: For
the Postgres DBMS, each mutant schemata approach clearly
outperforms the “Original” technique, with reductions of
up to an order of magnitude with the “Minimal Schemata”
approach evident for the RiskIt case study.

Yet, the picture is not so straightforward for SQLite, the
DBMS for which only two mutant schemata approaches
work because of its inability to handle concurrent connec-
tions. With SQLite, “Full Schemata” takes longer to perform
mutation analysis with all of the case studies. This is likely
due to the increase in the number of tables and the amount
of data that the database must store at one time. However,
big gains were still possible – for example, a reduction
of approximately 9.9 times with “Minimal Schemata” for

Table III
SUMMARY OF TABLES AND INSERTS USED FOR TECHNIQUES

The number of tables used, first, and the number of INSERT
statements executed, second and in italics, for mutation analysis.

Case study Original Full
Schemata

Minimal
Schemata

Cloc 60 120 60 120 32 64
JWhoisServer 1104 11408 1104 11408 190 2582
NistDML182 132 462 132 462 68 220
NistDML183 36 126 36 126 20 70
RiskIt 2080 16320 2080 16320 173 1511
UnixUsage 552 5658 552 5658 77 714
Total 3964 34094 3964 34094 560 5161

UnixUsage and a decrease in mean time from ∼20.5 minutes
to ∼2.5 minutes with “Minimal Schemata” for RiskIt. This is
likely caused by the consistently reduced number of tables
and INSERT statements used for mutation analysis which,
as shown in Table III, is considerable for all case studies.
For example, the number of tables used for the mutation
analysis of RiskIt falls from 2,080, when using the “Original”
or “Full Schemata” approaches, to 173, when using the
“Minimal Schemata” technique. Similarly, the number of
INSERT statements reduces greatly from 16,320 to 1,511.

The conclusion for this research question therefore, is yes,
mutation schemata approaches can improve efficiency, using
the “Minimal Schemata” approach for SQLite and all of the
approaches for the Postgres DBMS.

RQ2: Does parallelisation of mutant schemata ap-
proaches further reduce the time taken for mutation anal-
ysis?: As reported in Section IV-A, due to the limitations
of SQLite, we were only able to conduct experiments for
parallel approaches with Postgres. The results in Figure 10
show that with Postgres, the “Up-Front Schemata” technique
performed similarly to the non-parallel “Full Schemata”, for
all of the case studies, and was beaten by the non-parallel
“Minimal” approach. No significant differences were found
between the “Full” and “Up-Front” techniques, with the ex-
ception of the JWhoisServer and NistDML183 case studies.
For JWhoisServer, “Up-Front” was significantly faster than
“Full”, with a p-value of less than 10−6 and a large effect
size (Â12= 0.86). Conversely, for NistDML183, “Up-Front”
was significantly slower than “Full” with p = 0.011, and a
with medium effect size (Â12 = 0.69).

As seen in Figure 10, “Just-in-Time Schemata” clearly
outperformed “Full” and “Up-Front”, in all cases but for
Cloc. However, comparisons between the “Just-in-Time” and
“Minimal” approaches are not so obvious from the box plots.
Closer analysis with the Wilcoxon rank-sum test revealed
no significant differences between the two approaches with
each individual case study, except for NistDML183, where
“Just-in-Time” was significantly faster than “Minimal” with
a p-value less than 10−6 and a large effect size (Â12 = 0.12).
For Cloc, the similar performance of all mutant schemata
approaches is likely due to the small size of this case study,
which involves only two tables and no integrity constraints.

●●●●

●●●
●

●

●

●

●

●

●

●

●●

●
●
●

●

●●

●

●

●

●●●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●●●

●

●●

 NistDML183 RiskIt UnixUsage

 Cloc JWhoisServer NistDML182

1600

2000

2400

2800

50000

100000

150000

200000

250000

20000

40000

60000

80000

1000

2000

3000

4000

50000

100000

6000

8000

10000

12000

Orig
inal

Full S
ch

emata

Minim
al S

ch
emata

Up−Front S
ch

emata

Ju
st−

in−Tim
e Sch

emata

Orig
inal

Full S
ch

emata

Minim
al S

ch
emata

Up−Front S
ch

emata

Ju
st−

in−Tim
e Sch

emata

Orig
inal

Full S
ch

emata

Minim
al S

ch
emata

Up−Front S
ch

emata

Ju
st−

in−Tim
e Sch

emata

Orig
inal

Full S
ch

emata

Minim
al S

ch
emata

Up−Front S
ch

emata

Ju
st−

in−Tim
e Sch

emata

Orig
inal

Full S
ch

emata

Minim
al S

ch
emata

Up−Front S
ch

emata

Ju
st−

in−Tim
e Sch

emata

Orig
inal

Full S
ch

emata

Minim
al S

ch
emata

Up−Front S
ch

emata

Ju
st−

in−Tim
e Sch

emata

Mutation Analysis Technique

M
ut

at
io

n
A

na
ly

si
s

T
im

e
(m

s)
Postgres DBMS − Mutation Analysis Time

Figure 10. Mutation analysis time results for the Postgres DBMS, for each case study (box spans from 1st to 3rd quartile, line marks the median, whiskers
extend up to 1.5× the inter-quartile range, filled circles mark outliers).

In conclusion, the results for the parallelised versions of
mutant schemata are mixed. Gains are possible over naı̈ve
non-parallel mutant schemata approaches such as “Full”, but
there is little difference between the parallel “Just-in-Time”
and the non-parallel “Minimal”, excepting that parallelism
yields significantly better performance with NistDML183.

RQ3: Which is the best overall approach?: For SQLite,
where the parallelised mutant schemata approaches are not
available, the “Minimal” technique is clearly the most time-
efficient, as seen in Figure 11. For the Postgres DBMS,
the “Minimal” approach has a similar performance to the
“Just-in-Time” parallel method, as discussed in the last
research question. In conclusion, “Minimal” is the best
overall approach if parallelisation is not an option; otherwise
“Just-in-Time” and “Minimal” are equally as suitable.

RQ4: Does the efficiency of an approach depend on
the DBMS used?: The answer to this question is yes:
For SQLite and the “Full Schemata” approach, the cost
associated with storing additional tables simultaneously out-
weighs the savings from the reduction of CREATE and DROP

statements executed – yet the same is not true of Postgres.
While the “Minimal” approach does result in significant
time savings for both DBMS types, the parallel mutant

schemata approaches could not be evaluated on SQLite –
so, a comparison was a non-starter in this regard. Therefore,
it does depend on the DBMS as to whether a particular
mutant schemata approach is useful in speeding up mutation
analysis or not. The reasons for this are particular to the
architecture of the DBMS itself. In this study we compared
SQLite, a lightweight DBMS intended mainly for single-
user access and embedding into stand-alone applications,
against Postgres, a “heavy-duty” DBMS that is disk-based
and client-server and thus capable of supporting many
connections at once. As mentioned in Section VI, as part
of future work we intend to investigate this issue further
with more DBMSs and different DBMS architectures.

C. Threats to Validity
Potential threats to so-called “external validity” involve

factors that may affect the extent to which the results of the
study may be more widely generalisable. One such threat of
this nature comes from the type of the case studies used to
evaluate the presented approaches to mutant schemata. The
case studies were chosen based upon a number of criteria,
as discussed more thoroughly in Section IV-A, and vary
considerably in terms of the number of database tables (2
to 13), columns (6 to 56) and integrity constraints (0 to 50),

●

●

●

●

●

●

●

●

●

●

●

 NistDML183 RiskIt UnixUsage

 Cloc JWhoisServer NistDML182

6000

8000

10000

12000

14000

500000

1000000

1500000

2000000

200000

400000

600000

7500

10000

12500

15000

17500

20000

200000

400000

600000

30000

40000

50000

60000

Orig
inal

Full S
ch

emata

Minim
al S

ch
emata

Orig
inal

Full S
ch

emata

Minim
al S

ch
emata

Orig
inal

Full S
ch

emata

Minim
al S

ch
emata

Orig
inal

Full S
ch

emata

Minim
al S

ch
emata

Orig
inal

Full S
ch

emata

Minim
al S

ch
emata

Orig
inal

Full S
ch

emata

Minim
al S

ch
emata

Mutation Analysis Technique

M
ut

at
io

n
A

na
ly

si
s

T
im

e
(m

s)
SQLite DBMS − Mutation Analysis Time

Figure 11. Mutation analysis time results for the SQLite DBMS, for each case study (box spans from 1st to 3rd quartile, line marks the median, whiskers
extend up to 1.5× the inter-quartile range, filled circles mark outliers).

as well as the number of mutants produced (16 to 184);
Table II contains more information. While the “Nist” case
studies were the subject of a previous paper on the mutation
testing of database queries [13], we also took four of the case
studies from real-world applications, with three of these four
– JWhoisServer, RiskIt, and UnixUsage – having been used
in previous studies by Pan et al. [4] and Cobb et al. [14].
Of course, as already discussed in the Section IV-B, the use
of different DBMSs may also lead to different results.

A further threat may also come from the type of ma-
chine used to perform the experiments. Although DBMSs
perform a variety of operations in-memory, they also rely
heavily on disk-based access. Our machine uses a traditional
mechanical hard disk drive, and different results may be
obtained with machines using newer solid-state drives. Yet,
mechanical disks are still the commonest form of storage
available at the time of writing, and as such our results are
likely to be applicable to the majority of users. Investigation
of different machine configurations and their effects on the
performance of our techniques is an issue for future work.

Another such threat comes from the thread pool size used
in the implementation of “Up-Front Schemata” and “Just-in-
Time Schemata”. Only one configuration was included in the

empirical study – however this was enough to demonstrate
significant reductions in execution time. While it is possible
that varying this number could further improve mutant
analysis’ performance, this is an issue for future work.

Threats to internal validity involve factors that could have
introduced an error or bias into our results, such that the
conclusions drawn are incorrect. Our empirical study was
designed to investigate the time required by different tech-
niques to do the same task – mutation analysis – but using a
different approach (i.e., through mutation schemata or with
a parallelisation strategy). One such threat could therefore
result from defects in our implementation of the mutation
analysis process. However, we checked the mutation score
and the mutants that were killed and not killed by each
method. This information was identical in all cases, leading
us to judge that we correctly implemented each of the
techniques. Another potential source of error may arise from
resetting the DBMS into a consistent “state” before applying
each trial for the combination of each mutant schemata
approach and case study. To this end, we removed all tables
and their data at the end of each trial, thus ensuring that the
database was correctly emptied.

Finally, in terms of statistical analysis, we employed non-
parametric tests, which do not require the need to make or
test assumptions about the normality of the sample means,
thus avoiding the introduction of a further potential source
of error into the empirical study.

V. RELATED WORK

The original mutant schemata work focused on an im-
plementation for Fortran [8]; however, more recent work
has extended the approach to other programming languages
including Java [15], [16]. While the first parallel mutation
testing methods ran on MIMD machines like the hypercube
[6], recent approaches focus on the Java programming
language and run on general-purpose computers [7].

Parallel approaches have also been explored for the testing
of database management systems (DBMSs). For instance,
Haftmann et al. [17] describe and evaluate two parallel
architectures for comparing and testing different DBMSs:
“Shared-Nothing” runs tests on isolated machines that host
separate databases while “Shared-Database” employs mul-
tiple threads on a single machine that hosts one database
instance. Yet, it should be noted that these architectures only
support DBMS testing and not parallel mutation analysis of
database structure – the problem addressed in this paper.

Some prior work, such as Tuya et al. [13] and Shah et
al. [18], focus on the mutation testing of database queries
instead of the relational database schema. As an extension
to Tuya et al.’s method, Zhou and Frankl [19] present ways
to mutate database queries in the context of the database
application’s source code and execution environment. While
Chan et al. [20] do consider the mutation of database struc-
ture, they neither describe an implementation of mutation
analysis nor furnish an empirical evaluation. Moreover, none
of the aforementioned papers describe techniques that em-
ploy either mutant schemata or parallelisation to improve the
performance of mutation analysis for relational databases.

VI. CONCLUSIONS AND FUTURE WORK

Even though mutation analysis is an effective way to
assess the quality of input values and test oracles, it is a
computationally expensive method. This paper describes and
empirically evaluates four approaches that leverage mutant
schemata for improving the time efficiency of evaluating
database structure mutants, with two of these approaches
also employing parallelisation. While the results vary de-
pending on the DBMS used, they show that, for both
SQLite and Postgres, our techniques lead to a one to ten
times reduction in mutation analysis time. These promising
results suggest that it is possible to use mutation analysis
to efficiently evaluate the quality of both automatically and
manually generated INSERT statements and data values.

As part of future work, we will investigate different
strategies for improving approaches to mutant schemata
and perform further investigations with additional, larger

case studies and different types of DBMS. We also intend
to explore how the modification of various experimental
parameters, such as the type of disk drive used for hosting
the DBMS and the number of threads in the thread pool,
influence the efficiency of the presented methods. Finally,
we will improve our experimentation tools to record the time
taken in the different phases of each approach, thus allowing
for a more detailed analysis and comparison.

REFERENCES

[1] B. Butler, “Amazon: Our cloud powered Obama’s campaign,” Net-
work World, 2012.

[2] S. Loebman, D. Nunley, Y. Kwon, B. Howe, M. Balazinska, and J. P.
Gardner, “Analyzing massive astrophysical datasets: Can Pig/Hadoop
or a relational DBMS help?” in Proc. of IASDS, 2009.

[3] G. M. Kapfhammer, P. McMinn, and C. J. Wright, “Search-based
testing of relational schema integrity constraints across multiple
database management systems,” in Proc. of ICST, 2013.

[4] K. Pan, X. Wu, and T. Xie, “Generating program inputs for database
application testing,” in Proc. of ASE, 2011.

[5] Y. Jia and M. Harman, “An analysis and survey of the development
of mutation testing,” Transactions on Software Engineering, vol. 37,
no. 5, 2011.

[6] A. J. Offutt, R. P. Pargas, S. V. Fichter, and P. K. Khambekar,
“Mutation testing of software using a MIMD computer,” in Proc.
of ICPP, 1992.

[7] D. Schuler and A. Zeller, “Javalanche: Efficient mutation testing for
Java,” in Proc. of ESEC/FSE, 2009.

[8] R. H. Untch, A. J. Offutt, and M. J. Harrold, “Mutation analysis using
mutant schemata,” in Proc. of ISSTA, 1993.

[9] PostgreSQL Project, “Frequently asked questions,”
http://www.postgresql.org/about/, (Accessed 17/12/2012).

[10] A. J. Offutt, J. Voas, and J. Payne, “Mutation operators for Ada,” De-
partment of Information and Software Systems Engineering, George
Mason University, Tech. Rep., 1996.

[11] SQLite Developers, “Frequently asked questions,”
http://www.sqlite.org/faq.html#q5, (Accessed 21/12/2012).

[12] A. Vargha and H. D. Delaney, “A critique and improvement of the
CL common language effect size statistics of McGraw and Wong,”
Journal of Education and Behavioral Statistics, vol. 25, no. 2, 2000.

[13] J. Tuya, M. J. Suárez-Cabal, and C. de la Riva, “Mutating database
queries,” Information and Software Technology, vol. 49, no. 4, 2006.

[14] J. Cobb, G. M. Kapfhammer, J. A. Jones, and M. J. Harrold,
“Dynamic invariant detection for relational databases,” in Proc. of
WODA, 2011.

[15] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “MuJava: an automated
class mutation system,” Software Testing, Verification and Reliability,
vol. 15, no. 2, 2005.

[16] R. Just, F. Schweiggert, and G. M. Kapfhammer, “MAJOR: An
efficient and extensible tool for mutation analysis in a Java compiler,”
in Proc. of ASE, 2011.

[17] F. Haftmann, D. Kossmann, and E. Lo, “Parallel execution of test
runs for database application systems,” in Proc. of VLDB, 2005.

[18] S. Shah, S. Sudarshan, S. Kajbaje, S. Patidar, B. Gupta, and D. Vira,
“Generating test data for killing SQL mutants: A constraint-based
approach,” in Proc. of ICDE, 2011.

[19] C. Zhou and P. Frankl, “JDAMA: Java database application mutation
analyser,” Software Testing, Verification and Reliability, vol. 21, no. 3,
2011.

[20] W. K. Chan, S. C. Cheung, and T. H. Tse, “Fault-based testing of
database application programs with conceptual data model,” in Proc.
of QSIC, 2005.

