
The Impact of Equivalent, Redundant and Quasi
Mutants on Database Schema Mutation Analysis

Chris J. Wright
Dept. of Computer Science

University of Sheffield

Gregory M. Kapfhammer
Dept. of Computer Science

Allegheny College

Phil McMinn
Dept. of Computer Science

University of Sheffield

Abstract—Since the relational database is an important com-
ponent of real-world software and the schema plays a major role
in ensuring the quality of the database, relational schema testing
is essential. This paper presents methods for improving both
the efficiency and accuracy of mutation analysis, an established
method for assessing the quality of test cases for database
schemas. Using a DBMS-independent abstract representation, the
presented techniques automatically identify and remove mutants
that are either equivalent to the original schema, redundant with
respect to other mutants, or undesirable because they are only
valid for certain database systems. Applying our techniques for
ineffective mutant removal to a variety of schemas, many of
which are from real-world sources like the U.S. Department of
Agriculture and the Stack Overflow website, reveals that the
presented static analysis of the DBMS-independent representa-
tion is multiple orders of magnitude faster than a DBMS-specific
method. The results also show increased mutation scores in 75%
of cases, with 44% of those uncovering a mutation-adequate test
suite. Combining the presented techniques yields mean efficiency
improvements of up to 33.7%, with averages across schemas of
1.6% and 11.8% for HyperSQL and PostgreSQL, respectively.

I. INTRODUCTION

An essential part of many real-world software systems, the
relational database is usually one of an organization’s most
valuable assets. The structure of a relational database is defined
in a schema that is normally expressed in the structured query
language (SQL). The schema describes the types of data to be
stored in a database, the organization of that data into tables
and the constraints to which the data must conform [1].

Since it is crucial to maintain the integrity of the database’s
contents, the correctness of the database schema is of the
utmost importance. Without a correctly defined schema, an
application may, for instance, incorrectly create two users
with the same login ID or products with prices that are
less than zero. Even though schema correctness is essential,
practitioners report that database schema testing is a frequently
overlooked aspect of software quality assurance [2].

While several techniques (e.g., [3], [4], [5]) exist to generate
data for a database that can be used as “test cases” as part of
a schema testing strategy, a method is required to assess the
quality of those generated test cases. An effective way to per-
form such an evaluation is through mutation analysis [6], [7].
For example, by employing mutation analysis, Kapfhammer et
al. [8] found that the SchemaAnalyst tool was more effective at
testing database constraints than the popular DBMonster tool.
Mutation analysis involves repeatedly replicating a software

artifact and systematically injecting hypothesized faults. If a
test case behaves differently with the mutant compared to the
original schema, the mutant is said to be “killed”. The more
mutants a test suite kills, the more likely it is to reveal real
faults that are similar to the mutants that it kills.

Yet, mutation analysis is often a slow and expensive process,
requiring the generation and evaluation of many mutants,
not all of which make a useful contribution to the analysis.
For instance, some mutants may represent invalid schemas.
Other mutants may be equivalent to the original schema or
the same as other mutants—not only consuming unnecessary
computational and human resources, but potentially affecting
the accuracy of the analysis. The automatic detection and
removal of these types of mutants has been a topic of concern
for program mutation (e.g., [9], [10]), but it has not, hitherto,
been studied in the context of database schema mutation.

This paper proposes techniques for removing these “ineffec-
tive” mutants during database schema mutation analysis. The
initial step involves parsing schemas into an abstract, DBMS-
independent representation. Mutation is then performed at the
SQL-semantic level, in contrast to the traditional approach
for program mutation that creates mutants by syntactically
manipulating the program’s source code. Since there are many
different ways in which the same schema may be expressed in
the numerous and complex database-specific variants of SQL,
a standard syntactic approach can generate many mutants that
are trivially equivalent to the original, non-mutant schema.
While the abstract representation enables the static detection
of equivalent mutants, it also supports the identification of
redundant mutants that are semantically the same as one or
more other mutants. In addition, while some mutants are valid
schemas for certain DBMSs, they may be invalid for others.
The DBMS-independent representation also supports the static
identification of these mutants, allowing them to be culled
before starting the expensive process of mutant evaluation.

Including sixteen database schemas that vary in their source
(e.g., the U.S. Department of Agriculture and the Stack
Overflow website) and the number of tables (2 to 22), columns
(3 to 67), and constraints (0 to 50), the empirical study shows
that, without compromising the resulting mutation score, the
static analysis of the DBMS-independent abstract represen-
tation is multiple orders of magnitude faster than a DBMS-
specific method. The experiments also demonstrate that the
removal of ineffective mutants improves both the efficiency

CREATE TABLE artists (
artist_id text PRIMARY KEY

);
CREATE TABLE similarity (
target text,
similar text,
FOREIGN KEY(target) REFERENCES artists(artist_id),
FOREIGN KEY(similar) REFERENCES artists(artist_id)

);

(a) Schema definition

INSERT INTO artists VALUES ("A");
INSERT INTO artists VALUES ("A");
-- "A" already exists

(b) INSERT statements violating the schema’s PRIMARY KEY

Fig. 1. Fragment of the MillionSong schema [11]

and effectiveness of mutation analysis, reducing both the
computational and human costs of inspecting live mutants. The
study also shows that ineffective mutant removal increases the
mutation score, often revealing a mutation-adequate test suite.

To conclude, the contributions of this paper are as follows:
1) An abstract, DBMS-independent representation of rela-

tional database schemas that supports the accurate and
efficient identification of ineffective mutants during the
mutation analysis process (Section III);

2) Automated techniques for finding and removing the inef-
fective mutants of database schemas (Section IV);

3) Experiments that determine the efficiency improvement
attributable to the use of the DBMS-independent repre-
sentation and the impact that ineffective mutant removal
has on both the execution time of mutation analysis and
a schema’s resultant mutation score (Section V).

II. BACKGROUND

A. Relational Database Schemas

When creating a relational database, it is necessary to
specify a schema, which defines its structure in terms of tables,
columns and columnar data types. Optionally, the schema may
also include further restrictions on what data can be added to
the database, expressed as one or more integrity constraints.

There are five common types of constraints expressed in a
schema [1]. PRIMARY KEY constraints ensure that the values
in the given column(s) are unique, such that they individually
identify each row. As only one PRIMARY KEY can be declared
per table, UNIQUE constraints can also enforce additional row-
uniqueness properties. A NOT NULL constraint specifies that a
NULL value cannot be stored in a specific column. FOREIGN
KEY constraints enforce that each row in one table must
have a matching row in another table, connected according
to the values in one or more corresponding pairs of columns.
Lastly, CHECK constraints provide a means of defining arbitrary
predicates that each row must satisfy to be accepted into the
database. These may include boolean algebra operators, such
as conjunction, disjunction and negation, as well as relational
operators and database operations, such as ‘x IS NULL’, ‘x
BETWEEN y AND z’ and ‘x IN (y, ...)’.

Figure 1a shows a schema fragment from the freely
available MillionSong dataset [11], which contains 280GB

of data. The fragment involves two tables, artists and
similarity, and involves three integrity constraints: one
PRIMARY KEY and two FOREIGN KEYs. The PRIMARY KEY

on artist_id means that each INSERT statement adding a
row to the database must contain a different value. Figure 1b
demonstrates a sequence of statements, including one INSERT
that would be rejected due to violating this constraint. The
FOREIGN KEYs ensure that each target and similar value
refers to an existing artist_id value in artists.

B. Testing and Mutating Schemas

When the integrity constraints of a schema are not specified
correctly, erroneous data may be accepted into the database.
For instance, if the PRIMARY KEY for the artists table
of Figure 1a was accidentally omitted the DBMS would
erroneously accept duplicate rows of data, causing inconsis-
tency in the stored information. Alternatively, if a NOT NULL

constraint was incorrectly added to the target attribute of
the similarity table, then the DBMS would not accept the
NULL values that are permitted for this attribute.

Testing the database schema is therefore a crucial quality
assurance activity. Despite industrial practitioners who advo-
cate it [2], this is a stage of testing that is often overlooked.
Since a database schema is one of the first artifacts created
during software development, mistakes made in its definition
can have far-reaching effects that are costly to fix.

In previous work [8], we proposed techniques, implemented
in a tool called SchemaAnalyst, that test database schemas by
generating a test suite of INSERT statements. Using test data
that will be accepted or rejected by the DBMS, the purpose of
these INSERT statements is to satisfy and negate each of the
schema’s constraints, By running these tests and studying their
results, missing or incorrectly specified schema constraints
manifest as wrongly accepting or rejecting data.

The quality of these test suites can be evaluated using
mutation analysis, a process that involves modifying the
artifact-under-test in small ways to produce so-called mutants.
Intuitively, the mutation analysis of a relational database
schema works according to the following steps:

1) Produce mutants by applying mutation operators.
2) Execute INSERT statements with the original schema.
3) Execute INSERT statements with the mutant schemas.
4) Classify a mutant as killed if the results differ compared

to the original, otherwise categorize it as alive.
As an example of mutation analysis for schemas, Figure 2a

shows a mutant of the MillonSong schema of Figure 1a. A
NOT NULL constraint is added to the target field of the
similarity table. Figure 2b shows a test case involving
INSERT statements that demonstrate differing behavior be-
tween the original schema and the mutant.

The more mutants a test suite kills, the more types of faults
represented by the mutants it is able to kill, and the stronger
the suite is deemed to be [6]. A test suite is assigned a mutation
score, which is simply the number of mutants killed divided by
the total number of mutants created from the original schema.

CREATE TABLE artists_M (...);
CREATE TABLE similarity_M (
target text NOT NULL,
similar text,
FOREIGN KEY(target) REFERENCES artists_M(artist_id),
FOREIGN KEY(similar) REFERENCES artists_M(artist_id)

);

(a) A mutant with an additional NOT NULL constraint.
(Mutant tables are suffixed with _M for ease of identification.)

INSERT INTO similarity VALUES (NULL,NULL);

INSERT INTO similarity_M VALUES (NULL,NULL);
-- NULL not allowed

(b) A test case that kills the mutant in Figure 2(a). NULL values are
accepted for the original schema (first line), but the same INSERT

statement is rejected for the mutated schema (highlighted second line).

Fig. 2. Example of a mutant for the MillionSong schema fragment of Figure 1

By applying mutation analysis, Kapfhammer et al. [8] found
that SchemaAnalyst-generated test suites had a higher mutation
score than data generated by the open-source DBMonster
tool [12]. As with program mutation [6], [13], [14], however,
the mutation analysis process is often very computationally
expensive due to the large number of mutants that need to be
analysed by executing, in the worst case, the full test suite for
each mutant. Furthermore, mutation scores can be inaccurate
due to certain types of mutants that have the effect of skewing
the overall score; we now discuss these mutant types.

Equivalent Mutants. When applying mutation operators to
create mutants, it is possible that some mutants may be func-
tionally identical to the original artifact, despite their syntactic
differences. This implies that no test case can differentiate
between the original and the mutant, and thus the mutant
cannot be killed. In the context of schema mutation, Figure 3
furnishes an example of an equivalent mutant involving the
addition of UNIQUE constraint to a table where a PRIMARY

KEY is defined for the same column. Since primary keys
require the column to contain distinct values, the addition of
the UNIQUE constraint has no additional effect. The mutant,
therefore, behaves exactly the same as the original.

When equivalent mutants exist, the mutation score may be
inaccurate [15], thus potentially compromising the comparison
of different data generation techniques through mutation anal-
ysis. Equivalent mutants also have an associated human cost:
following mutation analysis, testers often have to manually
inspect test cases, mutants and the original schema to deter-
mine why a mutant is still alive. In the context of programs,
where 45% of undetected mutants are equivalent, the manual
study and classification of a mutant takes about fifteen minutes
[16]. Since it is impossible to kill an equivalent mutant, such
diagnostic effort is essentially wasted.

Combined with the execution cost per mutant, this makes
the detection and discarding of these mutants, known as the
equivalent mutant problem [6], an important issue for database
schemas. Since the large number of equivalent mutants and the
high costs of human inspection make it infeasible to manually
detect equivalent mutants, there are numerous approaches that
attempt to automatically detect them (e.g., [9], [16], [17]).

CREATE TABLE artists_M (
artist_id text PRIMARY KEY UNIQUE

);
CREATE TABLE similarity_M (...);

Fig. 3. Example of a mutant equivalent to the original schema in Figure 1

CREATE TABLE artists_M (...);
CREATE TABLE similarity_M (
...
FOREIGN KEY(target) REFERENCES artists_M(artist_id),
FOREIGN KEY(similar) REFERENCES artists_M(artist_id)
);

Fig. 4. A mutation that may be produced by multiple operators, leading to
redundant mutants

Prior to this paper, no methods existed for detecting the
equivalent mutants of relational database schemas.
Redundant Mutants. In the context of program mutation, Just
et al. describe a mutant as redundant if it is always subsumed
by other mutants [10]. In this paper, we use the term more
broadly: While equivalent mutants are semantically the same
as the original artifact, we say that mutants are redundant if
they are the same as one or more, already created, mutants.
Figure 4 furnishes an example of a mutation that may be
caused by more than one operator, thus leading to redundant
mutants. The mutation could be produced by either removing
the FOREIGN KEY directly or exchanging the similar col-
umn for target, thus overwriting the existing FOREIGN KEY

constraint. These mutations would produce mutants that are
equivalent to each other—and therefore redundant as well.
Quasi-Mutants. For traditional program mutation, a syntac-
tically invalid mutant is classified as being still-born [18].
Still-born mutants can also be created for database schema
mutation. However, in contrast to program mutation, it is
possible that some schema mutants are still-born with respect
to one DBMS but valid for another DBMS. This is due to
inconsistencies between the relational database models—for
example, PostgreSQL requires the columns of a FOREIGN

KEY to be part of a UNIQUE or PRIMARY KEY constraint,
while HyperSQL does not. These mutants are referred to
as quasi-mutants [8]. Not removing quasi-mutants ahead of
time precludes further optimization techniques for mutation
analysis [7], thus decreasing the efficiency of this process.
Summary. This paper explains how these—fundamentally
ineffective—equivalent, redundant and quasi-mutants can be
identified and removed before mutation analysis, thus decreas-
ing computational costs, saving human inspection time and
improving the accuracy of mutation scores. The next section
introduces the mutation operators for database schemas and the
DBMS-independent representation used to create the mutants,
thereby paving the way for the presentation of methods for re-
moving equivalent, redundant and quasi-mutants in Section IV.

III. MUTANT GENERATION WITH SchemaAnalyst

Figure 5 shows the different steps taken by SchemaAnalyst
during mutant production, beginning with the parsing of SQL
into an abstract, DBMS-independent schema representation,
described in Section III-A. SQL parsing is performed using

SQL Schema
Abstract Schema
Representation

Parse SQL

All Mutants

Apply Operators

Effective Mutants
Remove Ineffective Mutants

SQL Mutants
Write SQL

Fig. 5. The mutant generation pipeline

CREATE TABLE similarity_M1(
target text PRIMARY_KEY,
similar text,
...
);

CREATE TABLE similarity_M2(
target text,
similar text,
...
PRIMARY_KEY(target)
);

CREATE TABLE similarity_M3(
target text,
similar text,
...
);
ALTER TABLE similarity_M3
ADD PRIMARY KEY(target);

Fig. 6. Three equivalent (syntactic) mutants, avoided by the use of the abstract
representation of the relational database schema

the General SQL Parser (GSP)1, a commercial tool handling
SQL for a variety of DBMSs. After the schema is parsed into
the abstract representation, mutation operators are applied to
produce mutant schemas; the mutation operators presented in
this paper are documented in Section III-B. Following this, the
stage novel to this paper removes the ineffective equivalent,
redundant and quasi mutants, as discussed in Section IV.
Mutation analysis then begins, with mutants written to SQL
through an SQL-writing process tailored to the DBMS in use.
The SQL is then submitted to the DBMS and the test suite is
run against it to determine how many mutants the tests killed.

A. Abstract Schema Representation

In contrast to program mutation, which makes small changes
to program code at the syntax level, SchemaAnalyst applies
mutation operators to an abstract representation of the rela-
tional schema. The representation is a model that abstracts
over the various DBMS-specific dialects of SQL. Currently,
SchemaAnalyst supports the oft-used SQLite, PostgreSQL and
HyperSQL dialects. Along with modelling tables, columns and
integrity constraints, the representation abstracts the plethora
of data types made available by the different DBMSs down to
seven key types (e.g., boolean and string) [8].

The use of an abstract representation allows the technique
to mutate schemas at a semantic level, rather than a syntactic
one. For instance, Figure 6 shows three different ways a table
may be mutated to add a PRIMARY KEY to the same column,
where all three mutants are equivalent to one another. Mutation
at the semantic level avoids this issue. In the abstract model,
adding a column to a PRIMARY KEY is one operation and the
abstract representation of a schema is then written out as SQL
for a specific DBMS. The abstract representation also enables
a straightforward and effective static analysis of a schema
to efficiently find patterns corresponding to the equivalent,
redundant and quasi mutants, as explained in Section IV.

B. Mutation Operators

We now detail the mutation operators used in this paper.
We apply ten mutation operators, originally described by

1General SQL Parser (GSP) is available at http://sqlparser.com

TABLE I
MUTATION OPERATORS

The first ten (above the dashed line) are originally due to Kapfhammer et al. [8],
the remainder (below the dashed line) are new to this paper. The naming scheme
follows a system according to the constraint type being mutated (e.g., Primary
Key), the aspect being mutated (generally a column), and how the aspect is
being mutated (i.e., Added, Removed or Exchanged with another).

Operator Name Description
PKColumnA Adds a column to a PRIMARY KEY
PKColumnR Removes a column from a PRIMARY KEY
PKColumnE Exchanges a column in a PRIMARY KEY
FKColumnPairR Removes a column pair from a FOREIGN KEY
NNA Adds a NOT NULL to a column
NNR Removes a NOT NULL from a column
UColumnA Adds a column to a UNIQUE
UColumnR Removes a column from a UNIQUE
UColumnE Exchanges a column in a UNIQUE
CR Removes a CHECK

FKColumnPairA Adds a column pair to a FOREIGN KEY
FKColumnPairE Exchanges a column pair in a FOREIGN KEY
CInListElementR Removes an element from an IN (...) of a CHECK
CRelOpE Exchanges a relational operator in a CHECK

Kapfhammer et al. [8], along with four more introduced in
this paper. The mutation operators, which are listed with brief
descriptions in Table I, target schema constraints that guard
the consistency of the data stored in the database.

For brevity and ease of identification, we assign each
operator a name according to the constraint it affects and
the modification it makes. For example, the “PRIMARY KEY
Column Addition” operator is abbreviated to “PKColumnA”.
The “addition” and “removal” operators add and remove com-
ponents, respectively, while the “exchange” operators swap
some component for another. We refer the reader to [8] for
an explanation of the first ten operators.

Focusing on FOREIGN KEY and CHECK constraints, our
four additional operators address gaps in the initial ten op-
erators. The first new operator, “CInListElementR”, removes
elements from the list of a ‘CHECK COL IN (list)’ in
turn. The second, “CRelOpE”, replaces the relational operator
(=,<,>,≤,≥) in a CHECK constraint with each other relational
operator. The third operator, “FKColumnPairA”, adds a pair of
columns with matching data types to a FOREIGN KEY and the
fourth, “FKColumnPairE”, exchanges a pair of columns from
a FOREIGN KEY with a pair that have the same data type.

Comparing all 14 operators to the “atomic changes” iden-
tified in a study of changes made between different versions
of database schemas [19] confirms that the operators model
realistic refactorings of integrity constraints. Therefore, when
applied to a real-world schema the mutants generated are likely
to reveal constraints omitted or misspecified by the developer.

IV. REMOVING INEFFECTIVE MUTANTS

As previously mentioned in Section II, the mutation oper-
ators can generate ineffective (i.e., equivalent, redundant and
quasi) mutants that may decrease the accuracy of the mutation
score and/or increase the time taken to perform mutation anal-
ysis. This section describes our techniques for automatically
removing these ineffective mutants, thereby both decreasing
analysis costs and improving mutation score accuracy. Inte-
grated into SchemaAnalyst’s mutant generation pipeline, as
shown in Figure 5, these techniques work at the level of the ab-
stract representation, as described in Section III-A, thus greatly

function SCHEMAEQUIV(a, b)
if NAME(a) 6= NAME(b) return F
else if |TABLES(a)| 6= |TABLES(b)| return F
else if ¬TABLESEQUIV(TABLES(a),TABLES(b)) return F
else if ¬PKEYSEQUIV(PKEYS(a),PKEYS(b)) return F
else if ¬FKEYSEQUIV(FKEYS(a),FKEYS(b)) return F
else if ¬UNIQUESEQUIV(UNIQUES(a),UNIQUES(b)) return F
else if ¬CHECKSEQUIV(CHECKS(a),CHECKS(b)) return F
else return ¬NOTNULLSEQUIV(NOTNULLS(a),NOTNULLS(b))

function TABLESEQUIV(a, b)
if NAME(a) 6= NAME(b) return F
else return COLUMNSEQUIV(COLUMNS(a),COLUMNS(b))

function COLUMNSEQUIV(a, b)
if NAME(a) 6= NAME(b) return F
else return DATATYPE(a) = DATATYPE(b)

function PKEYSEQUIV(a, b)
return MULTICOLUMNCONSTRAINTEQUIV(a,b)

function FKEYSEQUIV(a, b)
if ¬MULTICOLUMNCONSTRAINTEQUIV(a,b) return F
else if NAME(REFTABLE(a)) 6= NAME(REFTABLE(b)) return F
else if |REFCOLUMNS(a)| 6= |REFCOLUMNS(b)| return F
else return REFCOLUMNS(a) ⊆ REFCOLUMNS(b)

function UNIQUESEQUIV(a, b)
return MULTICOLUMNCONSTRAINTEQUIV(a,b)

function CHECKSEQUIV(a, b)
if NAME(a) 6= NAME(b) return F
else if NAME(TABLE(a)) 6= NAME(TABLE(b)) return F
else return EXPRESSION(a) = EXPRESSION(b)

function NOTNULLSEQUIV(a, b)
if NAME(a) 6= NAME(b) return F
else if NAME(TABLE(a)) 6= NAME(TABLE(b)) return F
else return NAME(COLUMN(a)) = NAME(COLUMN(b))

function MULTICOLUMNCONSTRAINTEQUIV(a, b)
if NAME(a) 6= NAME(b) return F
else if NAME(TABLE(a)) 6= NAME(TABLE(b)) return F
else if |COLUMNS(a)| 6= |COLUMNS(b)| return F
else return COLUMNS(a) ⊆ COLUMNS(b)

Fig. 7. Rules for detecting structural equivalence

simplifying the analysis that needs to be performed without
losing the key information required to identify the ineffective
mutants. Using this abstract representation therefore avoids
the need for more computationally expensive techniques such
as genetic algorithms [9], constraint-based testing [17] or
coverage analysis [16]. In addition, the mutant generation pro-
cess produces mutants directly in this abstract representation,
facilitating the automatic, accurate, and efficient comparison
of the original and mutated database schemas.
A. Equivalent Mutants

This section defines two types of equivalence: structural
and behavioral. When SchemaAnalyst used detectors for these
two kinds of equivalence, as described in Figures 7 through 9
and the remainder of this section, this led to the removal of
123 equivalent mutants during the mutation analysis of 16
schemas, as noted in the empirical study of Section V.
Structural Equivalence. Structural equivalence is where two
schemas are identical except for possible syntactic differences
in their SQL definition. Along with factoring away these
syntactic differences, Figure 7 also reveals that the abstract
representation makes it easy to define equivalence detection.
Behavioural Equivalence. Two schemas may not be struc-
turally equivalent, but yet still have equivalent behavior, due
to functional overlap between different SQL expressions and
operators (which may pertain to certain DBMSs only). We de-
scribe three patterns of behavioural equivalence, with Figure 8

function NOTNULLEQUIVTOCHECK(a, b)
unmatched ← ∅
for all notNullA in NOTNULLS(a) do

found ← F
for all notNullB in NOTNULLS(b) do

if notNullA = notNullB
found ← T
break

if found = F
unmatched ←unmatched ∪ {notNullA}

if |unmatched| = 0 return T
else

for all notNull in unmatched do
if ¬EXISTSCHECK(notNull, b) return F

return T
function NOTNULLONPRIMARYKEY(schema)

for all notNull in NOTNULLS(schema) do
if EXISTSPRIMARYKEY(COLUMN(notNull))

REMOVE(notNull)

function UNIQUEONPRIMARYKEY(schema)
for all unique in UNIQUES(schema) do

if EXISTSPRIMARYKEY(COLUMNS(unique))
REMOVE(unique)

Fig. 8. Rules for detecting patterns of behavioral equivalence

furnishing functions for detecting them in schemas. These
patterns were discovered during a thorough study of over
60 schemas running on HyperSQL, PostgreSQL and SQLite.
While additional patterns may also exist for other DBMSs
and new schemas, we judge these to be both representative
and powerful and we further note that it is easy to integrate
new patterns into SchemaAnalyst’s equivalence detectors.
Pattern 1: NOT NULLs in CHECK constraints. Defining a
column as NOT NULL is behaviorally equivalent to defining
a CHECK(...IS NOT NULL). This can be implemented in
the SCHEMAEQUIV function of Figure 7 by looking for an
equivalent CHECK(...IS NOT NULL) for each NOT NULL

that doesn’t have a matching NOT NULL constraint, and vice
versa. If no such constraint exists, then the schemas are not
equivalent. The first function in Figure 8, NOTNULLEQUIV-
TOCHECK, shows the algorithm used for this check.
Pattern 2: NOT NULLs in PRIMARY KEY constraints. When
using PostgreSQL or HyperSQL, the columns of a PRIMARY

KEY implicitly cannot be NULL. This differs from the SQLite
DBMS, which requires an additional NOT NULL constraint
to match this behaviour. Consequently, when using either
PostgreSQL or HyperSQL, a mutation operator adding a NOT

NULL to the artist_id column in Figure 1 would produce
a behaviourally equivalent mutant. This means there exists no
input that would be accepted by the table in the original and
rejected by the table in the mutant, or vice versa.

The second function of Figure 8, NOTNULLONPRIMARYKEY,
shows the detection function for this pattern. Applied to each
mutant in turn, it identifies the matching mutants so that they
can be modified, in the case of either PostgreSQL or Hy-
perSQL, by removing any extraneous NOT NULL constraints.
Removing these NOT NULL constraint(s) later causes the struc-
tural equivalence detection function, as given in Figure 7, to
discard this type of ineffective mutant.
Pattern 3: UNIQUEs and PRIMARY KEYs with shared column
sets. Finally, as primary keys can be considered a stricter
form of the UNIQUE constraint, a mutant adding a UNIQUE

function DETECTQUASI(schema)
for all fk in FKEYS(schema) do

if ¬EXISTPRIMARYKEY(schema,COLUMNS(fk))
if ¬EXISTUNIQUE(schema,COLUMNS(fk)) return F

return T
function EXISTPRIMARYKEY(schema, columns)

for all pk in PKEYS(schema) do
if columns = COLUMNS(pk) return T

return F
function EXISTUNIQUE(schema, columns)

for all uc in UNIQUES(schema) do
if columns = COLUMNS(uc) return T

return F

Fig. 9. Rules for detecting quasi-mutants

constraint to a primary key column will be behaviourally
equivalent to the original. Tables artists and artists_m2

from Figures 1a and 3 show an example of two schemas that
are equivalent according to this pattern. Using pattern three
in a detection rule will drop the UNIQUE constraint in the
artists_M mutant of Figure 3, thus ensuring that it will be
identified as directly equivalent and discarded. Figure 8 reveals
the implementation of this function, UNIQUEONPRIMARYKEY.

B. Redundant Mutants
While equivalent mutants can be discarded for being struc-

turally or behaviourally equivalent to the original, non-mutant
schema, this paper’s methods also handle the problem of
redundant mutants, which Section II-B defined as mutants that
are equivalent to one or more other mutants. To both reduce
the cost of mutation analysis and increase the accuracy of
the resulting mutation score, a mutant is discarded if it is
redundant with respect to an already generated mutant.

Our approach to redundant mutant detection leverages the
technique for equivalent mutant detection, as previously de-
scribed in Section IV-A. Instead of checking each mutant for
equivalence with respect to the original schema, the same
check is effectively applied between every pair of mutants.
Adding redundant mutant removal to SchemaAnalyst led to the
discarding of eight mutants during the mutation analysis of 16
schemas, as presented in the empirical study of Section V.

C. Quasi-Mutants
As described in Section II-B, quasi-mutants will be rejected

by at least one DBMS and may negatively influence the
efficiency of mutation analysis; although, unlike equivalent
and redundant mutants, they should only be removed when
using a DBMS that will reject them.

This paper focuses on one major source of quasi-mutants
that pertains to the PostgreSQL and HyperSQL DBMSs. If
a FOREIGN KEY is defined on a table, the columns in the
referenced table must have a PRIMARY KEY or a UNIQUE

constraint defined on them as well. Otherwise, these DBMSs
will reject the schema. Even though the SQLite DBMS would
accept a CREATE TABLE statement not adhering to this rule,
PostgreSQL will reject it with the error message:

“There is no unique constraint matching given keys for referenced table
(Error 42830 (invalid foreign key))”

...while HyperSQL produces the error message:
“a UNIQUE constraint does not exist on referenced columns (Error 5529)”

TABLE II
SCHEMAS ANALYSED IN THE EMPIRICAL STUDY

Schema Ta
bl

es

C
ol

um
ns

C
he

ck
s

Fo
re

ig
n

K
ey

s
N

ot
N

ul
ls

Pr
im

ar
y

K
ey

s
U

ni
qu

es

∑ C
on

st
ra

in
ts

ArtistSimilarity 2 3 0 2 0 1 0 3
ArtistTerm 5 7 0 4 0 3 0 7
BankAccount 2 9 0 1 5 2 0 8
BookTown 22 67 2 0 15 11 0 28
Cloc 2 10 0 0 0 0 0 0
CoffeeOrders 5 20 0 4 10 5 0 19
Flights 2 13 1 1 6 2 0 10
IsoFlav R2 6 40 0 0 0 0 5 5
JWhoisServer 6 49 0 0 44 6 0 50
NistDML183 2 6 0 1 0 0 1 2
NistWeather 2 9 5 1 5 2 0 13
NistXTS749 2 7 1 1 3 2 0 7
RiskIt 13 57 0 10 15 11 0 36
StackOverflow 4 43 0 0 5 0 0 5
UnixUsage 8 32 0 7 10 7 0 24
WordNet 8 29 0 0 22 8 1 31
Total 91 401 9 32 140 60 7 248

Although a quasi-mutant schema can be identified by
submitting it to the DBMS as a series of CREATE TABLE

statements and then checking for DBMS rejection, this can be
very costly due to the number of tables and mutants combined
with the time taken to test each using the database. In addition,
this approach must run DROP TABLE statements to clear the
database between each mutant. An alternative to the individual
submission of SQL commands is to surround all of the CREATE
TABLE statements of each mutant in an SQL transaction,
leveraging a database’s “roll back” feature to remove the tables
in the event of DBMS rejection, thereby preparing for the next
mutant. Avoiding DBMS interaction altogether, we introduce
the discarding of quasi-mutants in the SchemaAnalyst mutant
generation pipeline using a detection function, invoked when
using an applicable DBMS. This function, shown as DETECT-
QUASI in Figure 9, is used to statically analyse each mutant
and discard any not satisfying the conditions. These three
techniques (i.e., direct DBMS interaction with and without
transactions and static quasi-mutant detection) are evaluated
and compared in the empirical study of Section V, revealing
the detection of 567 quasi-mutants across 16 schemas.

Interestingly, the existence of quasi-mutants demonstrates
that mutation analysis for relational schemas cannot be viewed
as a DBMS-independent process. It is also important to note
that, while additional kinds of quasi-mutant may exist for other
types of DBMSs, the experimental results in Section V show
that our current emphasis on one type of representative quasi-
mutant yields a substantial efficiency improvement. Moreover,
the use of the DBMS-independent abstract model makes it is
easy to add detectors for new types of quasi-mutants.

V. EMPIRICAL STUDY

A. Experimental Setup

We selected 16 schemas as case studies to use in our
experiments, aiming for a representative range in the number
of tables (2 to 22), columns (3 to 67) and constraints (0 to
50), as detailed in Table II. This assortment of properties
helps to ensure the results are broadly applicable to many
different schemas. Of the chosen schemas, 10 were taken
from real-world sources. For instance, JWhoisServer and

IsoFlav R2 belong to a WHOIS server application and a plant
compound database from the U.S. Department of Agriculture,
respectively. Other examples include UnixUsage, from a Unix
command history monitoring application, and WordNet, a
schema used in a visualiser for the WordNet lexical database.

Since the choice of DBMS may affect the results, exper-
iments were performed using both PostgreSQL and Hyper-
SQL, DBMSs chosen for their performance differences and
varying design goals. PostgreSQL is a full-featured, extensible
and highly scalable DBMS, while HyperSQL is a small,
lightweight DBMS supporting an “in-memory” mode that
avoids disk writing; we enabled this HyperSQL feature to en-
sure that the two DBMSs have different performance profiles.
Although SchemaAnalyst also supports SQLite, this paper does
not report on results with this DBMS due to space constraints
and the fact that it leads to empirical trends like HyperSQL’s.

We performed the experiments with the SchemaAnalyst tool
[8], compiled with the Java Development Kit 7 compiler and
executed with the Linux version of the 64-bit Oracle Java 1.7
virtual machine. Experiments were executed on an Ubuntu
12.04 workstation, with a 3.2.0-27 64-bit Linux kernel, a quad-
core 2.4GHz CPU and 12GB of RAM. All input (i.e., schemas)
and output (i.e., results files) were stored on the local disk. We
used the default configuration of PostgreSQL version 9.1.9 and
HyperSQL version 2.2.8 running in the “in-memory” mode.

Threats to Validity. Since background processes may lead to
small differences in the timings of results, we ran 15 repeat
trials per schema for each quasi-mutant detection approach
and each mutation analysis task. This allowed for means
and standard deviations to be calculated, statistical tests to
be performed, and for the results to be visualised with box
plots, providing further confidence that the results are accurate
and representative. Finally, we controlled the threats arising
from defects in SchemaAnalyst by both carefully testing the
tool and manually checking results on simple schemas. For
instance, we verified that SchemaAnalyst correctly applied the
right mutation operators, removed the anticipated ineffective
mutants and correctly calculated the mutation score.

Quasi-mutant Detection Metrics. To evaluate our static-
analysis approach to quasi-mutant detection, we compared
it to the simple and SQL transaction-optimised techniques
described in Section IV-C. We measured the number of quasi-
mutants detected by the three methods for each of the 16
schemas to determine their effectiveness, with the technique
that performs simple DBMS interactions acting as the “gold
standard”. To compare efficiency, we recorded the time taken
by each approach to identify the quasi-mutants.

Ineffective Mutant Removal Metrics. To determine the effect
of removing equivalent, redundant and quasi-mutants (using
the static analysis approaches described in Sections IV-A, IV-B
and IV-C, respectively) we compared mutation analysis per-
formed with and without ineffective mutant removal.

To measure the efficacy of ineffective mutant removal, we
determined the number of each type of mutant detected per
schema, allowing us to calculate the proportion of mutants dis-

TABLE III
INEFFECTIVE MUTANTS REMOVED

Number of equivalent, redundant and quasi-mutants that were automatically removed. As
all quasi-mutant detection techniques identified the same number of mutants, the reported
values are representative regardless of the chosen method. Savings is the percentage of
mutants that have been removed; total savings is calculated in a row-wise fashion.

(A) GROUPED BY SCHEMA

Schema Prod
uc

ed

Equ
iva

len
t

Red
un

da
nt

Qua
si-

M
uta

nt

∑ Ine
ffe

cti
ve

∑ Effe
cti

ve

Sav
ing

s (%
)

ArtistSimilarity 13 2 2 1 5 8 38.5
ArtistTerm 29 6 0 3 9 20 31.0
BankAccount 51 4 0 21 25 26 49.0
BookTown 235 22 0 0 22 213 9.4
Cloc 30 0 0 0 0 30 0.0
CoffeeOrders 115 10 0 54 64 51 55.7
Flights 70 4 3 19 26 44 37.1
IsoFlav R2 219 0 0 0 0 219 0.0
JWhoisServer 190 12 0 0 12 178 6.3
NistDML183 40 0 2 18 20 20 50.0
NistWeather 58 3 0 23 26 32 44.8
NistXTS749 33 4 0 7 11 22 33.3
RiskIt 503 22 0 297 319 184 63.4
StackOverflow 129 0 0 0 0 129 0.0
UnixUsage 220 14 0 124 138 82 62.7
WordNet 107 20 1 0 21 86 19.6
Total 2042 123 8 567 698 1344 34.2

(B) GROUPED BY OPERATOR

Operator Prod
uc

ed

Equ
iva

len
t

Red
un

da
nt

Qua
si-

M
uta

nt

∑ Ine
ffe

cti
ve

∑ Effe
cti

ve

Sav
ing

s (%
)

CInListElementR 4 0 0 0 0 4 0.0
CR 9 0 0 0 0 9 0.0
CRelOpE 10 0 0 0 0 10 0.0
FKColumnPairA 188 0 0 188 188 0 100.0
FKColumnPairE 287 0 5 222 227 60 79.1
FKColumnPairR 34 0 2 4 6 28 17.6
NNA 261 13 0 0 13 248 5.0
NNR 140 60 0 0 60 80 42.9
PKColumnA 327 0 0 61 61 266 18.7
PKColumnE 201 0 0 66 66 135 32.8
PKColumnR 74 0 0 21 21 53 28.4
UColumnA 427 50 0 1 51 376 11.9
UColumnE 68 0 0 2 2 66 2.9
UColumnR 12 0 1 2 3 9 25.0
Total 2042 123 8 567 698 1344 34.2

carded by Figure 5’s mutant generation pipeline. We classified
the influence on the mutation score in terms of increase, de-
crease or none, and tested for statistical significance using the
Wilcoxon Rank-Sum test, where a value <0.05 is significant.

We gauged the efficiency implications of ineffective mutant
removal by comparing the time taken for mutation analysis
with and without ineffective mutants, including the time taken
for static analysis in the latter case. We tested the change
for significance using the Wilcoxon Rank-Sum test and the
Vargha-Delaney Â12 effect size measure [20], where the dif-
ference is categorised as “large” if <0.29 or >0.71, “medium”
if <0.36 or >0.64 and “small” if <0.44 or >0.56. Otherwise,
the effect size is “none”. An effect size >0.5 represents a time
decrease, while <0.5 represents a time increase.

B. Empirical Results

Summary of Results. Table IIIa shows the number of mutants
generated for each schema; how many equivalent, redundant
and quasi-mutants were discarded as ineffective; and the
number of mutants remaining (retained). Table IIIb presents
the same data, but instead grouped by mutation operator. For
both, the savings value is the percentage of mutants removed

●●●●●
●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●●●●●
●●

●●●
●●

●●

●●●●

●●
●

●●●●●●●
●●

●●●
●

●

●

●●
●●●●●●

●●

●
●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

1.25

HyperSQL

HyperSQL Trans.

Postgres

Postgres Trans.
Static

Approach

S
ca

le
d

T
im

e
Ta

ke
n

Fig. 10. Quasi-mutant Detection – Time Taken
The results for each schema were scaled according to the maximum mean from any
approach for that schema, thereby allowing them to be combined without being affected
by scale differences attributed to the wide range of times taken.

for each schema. The total rows provides column-wise totals
except the savings, which we calculated across the total rows
themselves according to the following equation:

Total Savings = (1−
∑

Effective/
∑

Produced)× 100

The results in Table IV detail the mean and standard
deviation of the time taken to detect the quasi-mutants of
each schema for the three techniques. Since the time taken for
“Static” is the same for both PostgreSQL and HyperSQL, it
only appears in the table once. As we observed that the number
of quasi-mutants detected by each technique was consistent for
every case study and repeat trial, we omit these results.

Figure 10 shows the results from Table IV, with the values
for each schema scaled according to the maximum mean from
any approach. This allows them to be combined without being
affected by the range of times taken caused by the differences
in the schemas (e.g., the number of tables and constraints).

Table V shows the time taken for mutation analysis with
and without ineffective mutants, including the cost of static
analysis in the latter case. We summarise these values in Table
VI. The results in Table VII show the significance and effect
size for changes in the time overhead of mutation analysis.
Finally, we classify the change in mutation score caused by
ineffective mutant removal by direction of change and report
the significance of this change in Table VIII.

Research Questions.
RQ1: Is the detection of quasi-mutants using static analysis
more efficient than the DBMS-based approaches?

As shown in Table IV, the static analysis method for detect-
ing quasi-mutants is markedly quicker than the DBMS-based
approaches—regardless of whether the transaction-based op-
timisation is used—across all schemas and both DBMSs.
Figure 10 shows the time taken across all schemas in a scaled
format. This graph reveals that, while using the transaction-
based optimisation improves the performance of quasi-mutant
detection for both HyperSQL and PostgreSQL, the time taken
by the static analysis approach is still substantially lower than
the others. Additionally, although not included in the table due
to space constraints, each technique correctly identifies the
same number of quasi-mutants, as reported in Table III. We
therefore conclude that the static analysis approach represents
a vast efficiency improvement, reducing the time taken by

multiple orders of magnitude, while maintaining an identical
effectiveness when compared to the “gold standard” approach.
RQ2: How does ineffective mutant removal affect the time
taken for mutation analysis, and is it cost-effective?

As evidenced by the results in Tables V, VI and VII,
the time efficiency of removing ineffective mutants varies
significantly depending on both the schema and the DBMS.

When using HyperSQL, the mean time difference ranges
from -824 to 718ms and the mean percentage difference from
-9.71 to 23.05%, with mean values across all schemas of 7.5ms
and 1.6%, respectively. For 9 out of 16 schemas, removal
of ineffective mutants produces a mean time saving, all of
which are statistically significant (p-value <0.05) and have a
“large” effect size. For all of the 6 schemas where the time
taken increases, the changes are also significant and have a
“large” effect size. In summary, while the impact of ineffective
mutant removal is not consistent across schemas when using
HyperSQL, it provides a small time saving on average (mean
1.6%, median 1.4%), and produces a statistically significant
decrease in time taken for the majority of schemas (56%).

When using PostgreSQL, the mean time difference ranges
from -3,086 to 317,208ms and the mean percentage difference
from -0.33 to 33.71%, with mean values across all schemas of
50,880ms and 12.7%, respectively. Of the 16 schemas, removal
of ineffective mutants produces a mean time saving in 14
cases, where the difference is significant and has a “large”
effect size in 13 cases. In the two cases where the mean
time taken increases, both are statistically significant, with
“medium” and “large” effect sizes. However, as a proportion of
the overall time taken, these only represent increases of 0.33%
and 0.30%, or approximately 1.7 and 3.1 seconds in real terms.
To summarise, the impact of ineffective mutant removal when
using PostgreSQL is a statistically significant decrease in time
taken for 81% of the chosen schemas, reducing the time taken
for mutation analysis by over 5 minutes in the best case.

In conclusion, although the results differ according to the
DBMS used, in both cases ineffective mutant removal provides
savings on average, with mean values of 1.6% and 11.8% for
HyperSQL and PostgreSQL, respectively. We propose that this
difference is caused by the varying performance of HyperSQL
and PostgreSQL. As HyperSQL is much faster than Post-
greSQL, the cost of static analysis forms a larger proportion of
the overall time taken; for those schemas with few or no inef-
fective mutants, this causes a statistically significant increase
in time overhead. Yet, given the relative efficiency of mutation
analysis using HyperSQL, an in-memory DBMS, we argue
that this difference is not of practical significance. Thus, our
results show that ineffective mutant removal is cost-effective,
yielding a practically significant reduction in the duration of
mutation analysis, especially when using PostgreSQL.
RQ3: Does removal of ineffective mutants significantly affect
the mutation score?

The results in Table VIII show that, regardless of the DBMS
used, for 75% of the chosen schemas the mutation score
increases when removing ineffective mutants—and in no case

TABLE IV
MEAN AND STANDARD DEVIATION OF TIME TAKEN TO DETECT QUASI-MUTANTS

Schema
Time Taken (ms)

HyperSQL HyperSQL Trans. PostgreSQL PostgreSQL Trans. Static
Mean SD Mean SD Mean SD Mean SD Mean SD

ArtistSimilarity 2203 117 2057 148 2811 154 2562 101 <1 <1
ArtistTerm 14852 372 13373 307 14889 331 13377 364 3 <1
BankAccount 7248 244 6362 136 7372 278 6360 177 2 <1
BookTown 227657 1934 177102 1012 238193 1495 185695 1135 <1 <1
Cloc 2361 177 2114 130 2321 145 2052 112 <1 <1
CoffeeOrders 39086 635 32108 590 39071 785 32062 561 11 <1
Flights 10113 251 9059 272 10480 211 9355 192 2 <1
IsoFlav R2 151500 4475 137992 961 150570 1225 138145 970 <1 <1
JWhoisServer 107537 1187 96748 908 110345 1144 100450 801 <1 <1
NistDML183 3511 145 2957 113 4143 306 3445 198 2 <1
NistWeather 8643 385 7483 313 8536 198 7450 253 2 <1
NistXTS749 6633 206 6138 231 6676 213 6064 201 1 <1
RiskIt 258236 1754 210010 696 334288 1874 269025 1217 57 3
StackOverflow 34724 682 30633 510 34843 625 30796 726 <1 <1
UnixUsage 82574 1186 65771 756 102872 1341 79872 586 21 <1
WordNet 74003 852 65714 891 77998 1153 68160 529 <1 <1

TABLE V
MUTATION ANALYSIS TIME WITH AND WITHOUT INEFFECTIVE MUTANTS

Schema
HyperSQL PostgreSQL

Mean Time (ms) Mean Diff. Mean Time (ms) Mean Diff.
Without With (ms) (%) Without With (ms) (%)

ArtistSimilarity 185 240 55 23.05 5693 8588 2895 33.71
ArtistTerm 1178 1302 124 9.54 42668 55905 13238 23.68
BankAccount 1025 1071 47 4.35 30741 35458 4717 13.30
BookTown 26283 27001 718 2.66 1710434 1908186 197752 10.36
Cloc 1100 1027 -73 -7.15 28797 28838 41 0.14
CoffeeOrders 2979 3016 37 1.22 217683 257678 39995 15.52
Flights 2187 2161 -27 -1.24 79073 90303 11230 12.44
IsoFlav R2 9316 8492 -824 -9.71 1032813 1029727 -3086 -0.30
JWhoisServer 9401 9104 -297 -3.26 646683 686089 39407 5.74
NistDML183 755 737 -17 -2.37 23262 24378 1116 4.58
NistWeather 1546 1541 -4 -0.29 44922 48610 3688 7.59
NistXTS749 892 928 36 3.83 26214 31125 4911 15.78
RiskIt 17555 17831 276 1.55 2117462 2434670 317208 13.03
StackOverflow 6415 6007 -408 -6.79 515815 514126 -1689 -0.33
UnixUsage 5661 5955 294 4.93 885947 1042460 156513 15.01
WordNet 3668 3851 183 4.76 115310 141511 26201 18.51

TABLE VI
SUMMARY OF TIME SAVED BY REMOVING INEFFECTIVE MUTANTS

DBMS Time Difference (ms) Time Difference (%)
Median Mean Median Mean

HyperSQL 36.2 7.5 1.4 1.6
Postgres 8071.0 50880.0 12.7 11.8
Both 229.9 25450.0 4.7 6.7

did the score decrease. Practically, this means that following
mutation analysis there are fewer mutants remaining that
would require human inspection, reducing the effort required
to produce a mutation-adequate test suite. In 44% of the cases
where the score changed, the mutation score increased to 1,
meaning the test suite was in fact mutation adequate—and thus
required no manual inspection—but would be misclassified
without the use of ineffective mutant removal. The change
in mutation score across all schemas is also shown to be
statistically significant (p-value <0.05) in Table VIII.

VI. RELATED WORK

Experimentally observing that the schema of the database
in real-world applications changes frequently, Qui et al. both
demonstrate the important role that the relational database
schema plays in ensuring the correctness of an application
and motivate the need for extensive schema testing [19]. The
empirical results of Qui et al. are amplified by Guz’s remark
that one of the key mistakes in testing database applications

TABLE VII
MUTATION ANALYSIS TIME – SIGNIFICANCE

The significance of the change in the time taken for mutation analysis time when
removing ineffective mutatants, calculated with the Wilcoxon Rank-Sum test and effect
size calculated using the Vargha-Delaney Â12 measure.

Schema HyperSQL PostgreSQL
p-value Â12 p-value Â12

ArtistSimilarity <0.01 1.00 (large) <0.01 1.00 (large)
ArtistTerm <0.01 1.00 (large) <0.01 1.00 (large)
BankAccount <0.01 1.00 (large) <0.01 1.00 (large)
BookTown <0.01 0.87 (large) <0.01 1.00 (large)
Cloc <0.01 0.00 (large) 0.61 0.54 (none)
CoffeeOrders <0.01 0.75 (large) <0.01 0.97 (large)
Flights <0.01 0.15 (large) <0.01 1.00 (large)
IsoFlav R2 <0.01 0.00 (large) <0.01 0.28 (large)
JWhoisServer <0.01 0.01 (large) <0.01 0.97 (large)
NistDML183 <0.01 0.00 (large) <0.01 0.96 (large)
NistWeather <0.01 0.25 (large) <0.01 1.00 (large)
NistXTS749 <0.01 0.98 (large) <0.01 1.00 (large)
RiskIt <0.01 0.84 (large) <0.01 1.00 (large)
StackOverflow <0.01 0.00 (large) 0.01 0.30 (med)
UnixUsage <0.01 1.00 (large) <0.01 1.00 (large)
WordNet <0.01 1.00 (large) <0.01 1.00 (large)

TABLE VIII
MUTATION SCORE – CHANGE SUMMARY

The summary of how mutation scores change when removing ineffective mutants.
Increase, decrease and no change are the percentage of scores that increased, decreased
or did not change, respectively. Adequate is the percentage of scores that changed from
a value <1 to 1 (mutation adequate). The significance of the change in mutation score
when removing ineffective mutants is calculated with the Wilcoxon Rank-Sum test.

DBMS Increase (%) Decrease (%) No Change (%) Adequate (%) Significance
HyperSQL 75 0 25 44 0.001
PostgreSQL 75 0 25 44 0.001
Both 75 0 25 44 <0.001

is “not testing [the] database schema” [2]. Moreover, the
mutation operators employed by the methods in this paper
are similar to the real-world schema faults found by Qui et al.

While we focus on mutating the CREATE TABLE statements
that produce the schema, previous work has proposed and
evaluated mutation operators for the SQL SELECT statements
used by applications to retrieve data stored in a database [21].
This was later incorporated into a tool for instrumenting and
testing database applications written in the Java programming
language, potentially mutating any executed SELECT state-
ment [22]. Chan et al. propose some operators for mutating
schemas [23]; however, unlike this paper, they provide neither
an implementation nor an evaluation. Even though practi-
tioners emphasise the importance of schema testing [2], they
neither recommend specific approaches nor suggest a means
of comparing different techniques, in contrast to this paper.

In the context of using mutation analysis to compare test
data, the detection of equivalent program mutants is considered
to be generally undecidable [24]. Approaches using genetic
algorithms [9], constraint-based testing [17] and coverage
analysis [16] have been applied to detect some equivalent mu-
tants. In addition, Hierons et al. explained how to use program
slicing to reduce the effort needed to determine if a mutant is
equivalent [25]. Applying it to the equivalent mutant problem,
Hierons and Merayo have also presented an algorithm for
detecting equivalence between pairs of probabilistic stochastic
finite state machines [26]. Yet, while these methods may be
adapted for databases, none of them currently handle relational
database schema mutants. Finally, the term redundant mutant
was previously used by Just et al. [10] to describe mutants
that should be removed because they are always subsumed by
other mutants. We use this term more generally, encompassing
all of the mutants that are equivalent to other mutants.

VII. CONCLUSIONS AND FUTURE WORK

While mutation analysis can assess the quality of a test
suite, mutation operators may generate ineffective (i.e., equiv-
alent, redundant and quasi) mutants that both reduce the
accuracy of the resulting mutation score and increase the
associated computational and human costs. This paper presents
methods that statically analyse a DBMS-independent abstract
representation of a relational schema to identify and remove
these mutants. To handle equivalent and redundant mutants,
the presented technique looks for structural and behavioral
equivalence patterns in the abstract representation. Removing
quasi-mutants also involves static analysis of the representation
to find foreign key constraints rejected by certain DBMSs.

Using 16 relational schemas, the two-phase empirical study
highlighted the positive impact of removing ineffective mu-
tants. The first phase showed that detecting quasi-mutants
using static analysis, rather than direct interaction with the
DBMS, was many orders of magnitudes faster for both Hy-
perSQL and PostgreSQL, with savings of over 5 minutes
in the best case. The second phase revealed that ineffective
mutant removal is beneficial for the majority of schemas,
with a mean savings of 1.6% and 11.8% for HyperSQL and
PostgreSQL, respectively. In addition, removing ineffective
mutants improves the accuracy of mutation analysis, increasing
the mutation score in 75% of the cases, and revealing a
mutation-adequate test suite in 44% of those cases, thus
obviating the need for human inspection of the live mutants.

Aiming to further improve the efficiency and accuracy of
mutation anlaysis, we intend, as part of future work, to inves-
tigate whether additional mutant equivalence patterns exist. In
an effort to identify additional types of quasi mutants, we will
also continue to study how different DBMSs implement the
structured query language. Since direct DBMS interaction is
useful for validating the presented static analyses, we will also
explore optimisations for quasi-mutant detection that involve
submitting only the mutated section of the schema. Using
more relational schemas, we also plan to conduct additional
experimental studies. Finally, we will explore the use of selec-

tive mutation to determine which operators may be omitted,
thereby reducing the number of mutants to analyse without
adversely affecting the accuracy of the mutation score. Overall,
the combination of this paper’s ineffective mutant removal
methods and the improvements completed during future work
will yield an accurate and efficient way to assess the quality
of relational schema test suites through mutation analysis.

REFERENCES

[1] G. M. Kapfhammer, “A comprehensive framework for testing database-
centric applications,” Ph.D. dissertation, University of Pittsburgh, 2007.

[2] S. Guz, “Basic mistakes in database testing,” http://java.dzone.com/
articles/basic-mistakes-database, (Accessed 24/01/2014).

[3] C. Binnig, D. Kossmann, and E. Lo, “Multi-RQP: Generating test
databases for the functional testing of OLTP applications,” in Proc. of
TDS, 2008.

[4] N. Bruno and S. Chaudhuri, “Flexible database generators,” in Proc. of
VLDB 2005.

[5] S. Shah, S. Sudarshan, S. Kajbaje, S. Patidar, B. Gupta, and D. Vira,
“Generating test data for killing SQL mutants: A constraint-based
approach,” in Proc. of ICDE, 2011.

[6] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” TSE, vol. 37, no. 5, 2011.

[7] C. J. Wright, G. M. Kapfhammer, and P. McMinn, “Efficient mutation
analysis of relational database structure using mutant schemata and
parallelisation,” in Proc. of Mutation, 2013.

[8] G. M. Kapfhammer, P. McMinn, and C. J. Wright, “Search-based
testing of relational schema integrity constraints across multiple database
management systems,” in Proc. of ICST, 2013.

[9] K. Adamopoulos, M. Harman, and R. Hierons, “How to overcome the
equivalent mutant problem and achieve tailored selective mutation using
co-evolution,” in Proc. of GECCO, 2004.

[10] R. Just, G. M. Kapfhammer, and F. Schweiggert, “Do redundant mutants
affect the effectiveness and efficiency of mutation analysis?” in Proc. of
Mutation, 2012.

[11] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The million
song dataset,” in Proc. of ISMIR, 2011.

[12] A. Ominiyi, “Playing with a DBMonster,”
http://java.dzone.com/tips/playing-dbmonster, (Accessed 24/01/2014).

[13] R. Just, G. M. Kapfhammer, and F. Schweiggert, “Using conditional
mutation to increase the efficiency of mutation analysis,” in Proc. of
AST, 2011.

[14] R. Just, F. Schweiggert, and G. M. Kapfhammer, “MAJOR: An efficient
and extensible tool for mutation analysis in a Java compiler,” in Proc.
of ASE, 2011.

[15] B. Grun, D. Schuler, and A. Zeller, “The impact of equivalent mutants,”
in Proc. of Mutation, 2009.

[16] D. Schuler and A. Zeller, “(Un-)covering equivalent mutants,” in Proc.
of ICST, 2010.

[17] A. J. Offutt and J. Pan, “Automatically detecting equivalent mutants and
infeasible paths,” JSTVR, vol. 7, no. 3, 1997.

[18] A. J. Offutt, J. Voas, and J. Payne, “Mutation operators for Ada,”
Department of Information and Software Systems Engineering, George
Mason University, Tech. Rep., 1996.

[19] D. Qiu, B. Li, and Z. Su, “An empirical analysis of the co-evolution of
schema and code in database applications,” in Proc. of FSE, 2013.

[20] A. Vargha and H. D. Delaney, “A critique and improvement of the CL
common language effect size statistics of McGraw and Wong,” Jour. of
Educ. and Behav. Stat., vol. 25, no. 2, 2000.

[21] J. Tuya, M. J. Suárez-Cabal, and C. de la Riva, “Mutating database
queries,” IST, vol. 49, no. 4, 2006.

[22] C. Zhou and P. Frankl, “JDAMA: Java database application mutation
analyser,” JSTVR, vol. 21, no. 3, 2011.

[23] W. K. Chan, S. C. Cheung, and T. H. Tse, “Fault-based testing of
database application programs with conceptual data model,” in Proc.
of QSIC, 2005.

[24] T. A. Budd and D. Angluin, “Two notions of correctness and their
relation to testing,” Acta Inform., vol. 18, no. 1, 1982.

[25] R. Hierons, M. Harman, and S. Danicic, “Using program slicing to assist
in the detection of equivalent mutants,” JSTVR, vol. 9, no. 4, 1999.

[26] R. M. Hierons and M. G. Merayo, “Mutation testing from probabilistic
and stochastic finite state machines,” JSS, vol. 82, no. 11, 2009.

